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ABSTRACT

In this paper we present a new approach to person detection
in outdoor surveillance tasks. A multi-modal segmentation
(RGB, Polarimetric, thermal sensors) of the world into re-
gions sky, road, bush, trees, grass etc. is used to learn the
normal spatial context of people appearing in normal training
data. The context feature is a novel application of the work of
Wolf et al. [1] which enables the probability of a person ap-
pearing in a certain location to be computed. By using motion
as a precursor to the deployment of a HOG person detector
in conjunction with the spatial context likelihood we obtain
significant improvement in person detection for challenging
scenes. Comprehensive ROC analysis on 4 outdoor scenes is
reported for normal activity detection. Anomaly detection is
then achieved using learned context and we show that 72% of
true positive anomalies are found for a false positive rate of
0.19% over all data in thermal and visual band data.

Index Terms— Surveillance, Sensor fusion, person de-
tection.

1. INTRODUCTION AND RELATED WORK

In surveillance tasks, it is important to be able to detect ob-
jects that are at times hard to find in varying environments and
also to detect unusual behaviour. In a dynamically changing
scene, it is often difficult to detect objects due to occlusion,
shade and clutter. Context is being used increasingly in com-
puter vision to help perform scene recognition [2], region cat-
egorisation [3] and object detection [4]. Towards the goal of
performing situation awareness tasks, context may be used
to minimise false alarms and for optimisation so that work-
load is managed. The novel use of context is presented in this
work and is used to improve the accuracy of scene segmen-
tation and algorithm deployment. We develop algorithms to
automatically segment a scene into basic region types (road,
sky, bush, trees and grass) and these extracted regions are then
used to provide spatial context to enhance HOG-based pedes-
trian detection [17].

In this brief review we focus on the use of spatial con-
text in visual processing, noting that there has been extensive
work on pedestrian detection, tracking and scene segmenta-
tion reported. Olivia et al. argue that a scene composed of
contextually-related objects is more than than just the sum
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Fig. 1. Improvements to calculations of Q: (a) Image of the
scene; (b) Old method of absolute Q computation; (c) Our
method of Q computation. Note false polarisation detection
is massively reduced.

of constituent objects [5]. Bar and Ullman showed that ob-
jects are faster to localise and recognise when presented in
a familiar context [6]. Torralba presented a method for ob-
ject localisation given scene recognition [7]. Murphy uses a
combination of local image features and global features (the
gist) to perform object detection and localisation [8], achiev-
ing improved detection rates. Keller and Wang were early
proponents of learning spatial relations in computer vision [9]
using neural networs to generalise spatial relationships from
simple examples. Singhal uses contextual spatial relations to
improve region classification [10]. Conditional random fields
(CRF) have been used for this task also by Wojek and Schele
[11]. Fei-Fei tackles scene recognition[12] using a Bayesian
hierarchical model to learn and recognise natural scene cate-
gories. Heitz and Koller directly exploit regions in an image
as context to improve object detection [4], improving object
detection by using the surrounding context rather than blindly
applying a sliding window approach across the whole image.
Wolf and Bileschi also use image regions to provide context
to improve object detection [1].

In this work we make the following research contribu-
tions, which to our knowledge have not been presented in a
real multi-modal surveillance system: 1. Using two different
forms of context, prior and temporal, region classification is
improved; 2. Multiple sensory data is fused via contextual
smoothing after classification; 3. Motion and object detection
are improved using an object-centric context feature.
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Fig. 2. Process of sky classification: (a) Input RGB image. (b)
Graph-based segmented result on RGB image. (c) Extracted
sky region from the segmented image.

2. AUTOMATIC SCENE SEGMENTATION

Our trial vehicle has a top-mounted array of six visual cam-
eras and six short-wave infra-red (SWIR) cameras. The six
grey-scale visual cameras are sensitive to light of wavelength
450nm, 500nm, 550nm, 650nm, 700nm and 880nm. The
six grey-scale SWIR cameras are sensitive to light of wave-
length 950nm, 1050nm, 1150nm, 1250nm, 1350nm and
1550nm. We also use a Catherine MP thermal camera which
operates in the 8 − 12µm range and is sensitive to polarised
radiation. Radiation emitted or reflected from a surface can
be described by four Stokes parameters I,Q, U and V . I is
the total intensity of the radiation. P , highlights manmade
objects, Q picks up horizontal and vertical polarised surfaces
and U detects diagonal polarised surfaces. The Stokes pa-
rameters are defined as follows: I = 1

2 (i0 + i45 + i90 + i135),
Q = i0− i90, U = i45− i135, where the intensity, ix, is mea-
sured on a pixel element with diffraction grating polariser ori-
ented at x degrees to the horizontal. Using the Stokes param-
eters, the amount of polarisation, P , and the angle of polari-

sation, Φ, are calculated by: P =
√

Q2+U2

I , Φ = 1
2 tan

−1 U
Q

We briefly outline the classification step of the work (note
this has been covered in detail in a previous article [13]). We
aim to detect four regions: sky, road, foliage and the “other”
class. Since we have strong prior knowledge about the scene,
the sky is defined as the region above the horizon including
clouds; road is any visible tarmac road; foliage is defined as
green vegetation i.e. bush, tree or cut grass (BTG) in the im-
age; and the other class is any pixels that do not fall into these
regions. The four classifiers built to detect each of the de-
scribed regions are outlined here.

Sky: The registered 450nm, 550nm and 650nm images
are used to create colour images. Felzenszwalb’s graph-based
image segmentation is then used to segment these RGB im-
ages [14]. The sky is then classified by taking the largest top
region of the segmented image. It is acknowledged that this is
heuristic assumption valid only for this data set. An example
of this process is shown in Figure 2.

Road: The polarimetric data is exploited for road detec-
tion: as a smooth man-made object it has a strong polarisation
signature. TheQ Stokes parameter (Q = i0− i90) is sensitive
to polarised radiation in the horizontal direction [13]. There-
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Fig. 3. Process of road classification: (a) Input Q image.
(b) Median filtered and thresholded road classification shown
in green, ground truth in blue. Correctly detected pixels are
therefore cyan.
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Fig. 4. Process of vegetation classification:(a) Input; (b)
NDV I image made using the 880nm (NIR) and 650nm
(RED). (c) Classified vegetation.

fore, in our data, the Q data can be used as a road detector.
An adaptive threshold is applied in order to binarise the im-
age and then a median filter is applied to reduce false alarms
as shown in Figure 3. Here the Q image is shown on the left
and then the thresholded and median filtered road classifica-
tion shown in green over the ground truth in blue on the right.
The road detection method tends to be noisy with high false
positives and is a good candidate for improvement which we
achieve via temporal smoothing to reduce the false positives
(vs ground truth) in road classification from 0.35 to 0.003, and
the accuracy to 0.98 from 0.71.

BTG: Live green plants absorb solar radiation in the pho-
tosynthetically active radiation (PAR) spectral region which
includes the red waveband. They also scatter light in the near
infra-red (NIR) region. Therefore, NIR and red wavebands
can be combined in the Vegetation Index in order to highlight
vegetation [15]. We use the Vegetation Index to classify bush,
tree and cut grass. It is defined as NDV I = NIR−RED

NIR+RED ,
where NIR is the 880nm waveband of light (for these ex-
periments), RED is the red band (650nm) and NDV I is the
normalised vegetation index. The output of the NDV I has a
median filter applied and is then thresholded to produce a bi-
nary image. The threshold used is an learned threshold found
by testing over many images. An example of the vegetation
classification is shown in Figure 4.

We may make a further refinement to the detection of veg-
etation to distinguish between and detect bush and grass. To
discriminate between bush and grass in the highlighted re-
gion, a RGB image is converted to L*a*b*. When used in
combination with the difference, NIR and red band image,
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Fig. 5. Separation of the BTG class: (a) input RGB image; (b)
examples bush classification; (c) example grass classification
(red corresponds to likely and blue unlikely).

ground truth raw classes smoothed

Fig. 6. Temporally-smoothed segmentation, Context im-
proves the segmentation vs. ground truth. Blue is sky, red
is road, green is BTG and yellow is “other”.

we may produce a probability per pixel for the bush and grass
areas, illustrated in Figure 5.

Smoothing of the image segementation. The contex-
tual framework used by Matzka is adapted to fit temporally
smooth the raw classifier results [16]. (NB rather than using
the Bayesian framework to calculate the probability that a
detection of a vehicle is true given a particular road type, the
probability that a region exists given a detection at a pixel is
computed from prior and temporal knowledge.)

For evaluation, a training set of images are ground-truthed
by hand so that the accuracy of the classifiers can be calcu-
lated. The classifiers were tested on these images and the true
positive rates (TPR), false positive rates (FPR) and accura-
cies (Acc) of the detectors were computed over each image.
These metrics are based on pixel measurements. For a par-
ticular classifier, the total number of true detected pixels are
counted (true positive - TP ), the number of missed pixels
(false negative - FN ), the number of wrongly detected pix-
els (false positive - FP ) and the correct non-detections (true
negative - TN ). The metrics are defined as follows: TPR =

TP
TP+FN ; FPR = FP

FP+TN ; Acc = TP+TN
TP+FN+TN+FP =

TP+TN
Totalpixels

The medians of the results for all of the temporally-
smoothed test data are shown in Table 1. Some classification
image results are shown in Figure 6. These show the colour
image, the ground truth and the detection results for two
illustrative frames.

Sky Road BTG Other
Raw 0.96 0.90 0.71 0.76
Smoothed 0.99 0.93 0.87 0.89

Table 1. Accuracy of the individual classifiers, temporally
smoothed, vs manually-acquired ground truth.

Fig. 7. Colour image (left) and corresponding segmented im-
age (right). Red = road, blue = sky, green = sky, yellow =
bush.

3. IMPROVING PERSON DETECTION USING
SPATIAL CONTEXT

Having achieved a stable and accurate segmentation into ba-
sic background regions, we now show how extracted regions
of an image can improve object detection. The goal is to en-
able context to improve the detection rate and false alarm rate
of a detector. A further goal is to show context can be used to
detect unusual behaviour. A spatial object-centric approach
is taken: we look for how the regions relate to the object
and learn likelihoods of appearance in regions. The regions
extracted from the segmentation serve as spatial context, an
example input is shown in Figure 7.

The context feature we propose is inspired by Wolf [1]. In
order to gather information about the context surrounding an
object of concern, we sample points at a pseudo logarithmic
distance from the object. We sample in four directions (above,
below, left, right) and at 4 pixel distances along those direc-
tions (1, 40, 100, 200). Given a bounding box of an object,
the measure of pixel distance from the object begins from the
edge of the box.

When an object is detected in an image, the surrounding
regions (which have been detected in the scene segmentation)
are sampled using this context feature and the region at each
sample location recorded. Each sample location, lk, has a
learnt prior probability of expected region Rc at that loca-
tion: P (Rc|lk), where c is one of the four region classes and
k is one of the 16 sample locations. The prior probabilities
P (Rc|lk) at each sample location are learnt normalised his-
tograms for the four region classes. For example, the sample
location 200 pixels above the object has learnt probabilities of
expected regions (sky, road, grass or bush). If the segmented
region sampled at this sample location is grass, then the prob-
ability learnt for grass is taken.

Probabilities at all other sample locations are similarly
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recorded depending on the segmented region sampled. We
now combine this information to find the probability for the
object detected to exist given the surrounding context i.e what
is the likelihood that an object would have the surrounding re-
gions located at the sample points. This is simply the average
of all of the recorded probabilities: the total probability of an
object, O, to exist given the surrounding context, C, is given
by, P (O|C) = 1

n

∑
(P (Rc|lk)), where n is the number of

sampled locations. The priors are learnt by using the manual
ground truth data for labelled objects.

Person detection: We aim to improve a standard person
detection algorithm by using the proposed context feature.
Person detection is achieved using the HOG detector. The
HOG detector used is the optimised detector proposed by
Maji et al. [17]. We take their pre-trained classifier and test
it on our data. The classifier is trained on colour images
and we test it on visual and thermal data. The performance
of the detector is scene dependent, depending on depth of
scene, occlusion etc. Hence we split our analysis into the four
scenes evident in our dataset, quoting aggregated results for
the performance in the visual and thermal data for each of the
four.

Spatial context and motion detection: To increase the de-
tection rate of the detector, and also decrease the false posi-
tives, motion and context are used together. The motion de-
tector and context feature are used in combination to give an
indication of an area where an object is expected to be. The
HOG detector is then applied to this region. To do this, if
motion is detected with a context feature above the context
threshold of P (O|C) = 0.6 (which is found to be optimum in
training) the region surrounding this motion is considered as
a candidate pedestrian area. If the motion is at distance from
the camera, the area is magnified by 3x and the HOG detector
is then run on the magnified area in order to detect pedestri-
ans. Otherwise, the HOG detector is run on the inference area
with no magnification.

To give an indication of whether the motion detected is
far or near from the camera, additional range data is used
derived from the hand-labelled pedestrian ground truth for a
given scene. Given a vertical location in the image, the ex-
pected height of a pedestrian is known from this data. Mo-
tion is considered to be far from the camera when the height
of the hand-labelled at the y-coordinate of the motion is less
than 150 pixels and is considered near otherwise. Examples
of this method working successfully to improve the detection
performance in both modalities are shown in Figures 8 and
9. Improved results using this method compared to using the
HOG detector alone are shown in the ROC plots in Figure 10.

Improvement in performance can be seen in the plots
when the ‘◦’ plots for motion plus context are upwards and
to the left of the ‘∗’ plots for no motion or context for the
same scene (same scenes are plotted in the same colour).
Again, it can be seen from the ROC plots that the results
are scene dependant. It has been shown here that when the

Fig. 8. the HOG detector fails to detect one of the pedestrians
in a visual image. Using motion plus context, area is zoomed
into and HOG now detects pedestrian.

Fig. 9. The HOG detector fails to detect both of the pedestri-
ans in a thermal image. Using motion plus context, the area
is zoomed into and HOG now detects both pedestrians.

Fig. 10. Complete ROC plot for HOG detector on visual data
(top) and thermal (bottom) with no context and with motion
and context. Median results for all four scenes are shown
independently.
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Fig. 11. Two person detections are found in this image, how-
ever, the contextual feature for each differs: the pedestrian on
the left is considered to behaving unusually P (O|C) = 0.52
and the pedestrian on the right usually P (O|C) = 0.67.

TP FP
Visual 0.73 0.21
Thermal 0.70 0.18

Table 2. Combined results of anomaly detection in visual and
thermal data over all scenes.

context feature is used with a motion cue, performance of the
detector generally improves and in situation awareness tasks,
the objects of interest will normally be moving.

Contextual anomaly detection: The contextual feature
can also be used to detect unusual behaviour. Conversely to
the normal detection, where the HOG detections are not con-
sidered to be true detections if the context feature computed
falls below the context threshold, detection in an area where
the object is not expected can be considered as anomalous be-
haviour. The threshold of P (O|C) = 0.6 is used, as before,
and the prior probabilities are learnt from the expected be-
haviour of the pedestrian. Rather than considering motion in
an area with a context feature above P (O|C) = 0.6 , motion
detected in an area below the threshold only is considered.
The region is magnified if considered to be far form the cam-
era. An example image of anomalous behaviour detection is
shown in Figure 11. Overall results are given in Table 2.

4. CONCLUSION

We have presented a complete system for improving person
detection using learned spatial object context which relies
only on simple image classifiers. The approach is generic and
not limited to HOG detection or scenes of the type shown
here. Object/Person detector accuracy tends to be scene de-
pendent and our technique may be used to mobilise prior
knowledge of the scene to reduce false alarms and improve
accuracy, as demonstrated, in such cases. Anomaly detection
is a natural result of the learned spatial context which is very
useful in visual situation awareness tasks. Future work is
focussing on developing probabilistic scene segmentation,
a real-time implementation using heterogeneous hardware
(FPGA, GPU etc.) and integrating other types of object into

the system (vehicles, for example).
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