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ABSTRACT 

 

A novel filter method for feature selection is presented. In 

our research, we observed that the feature relevance 

measures in the literature evaluate the features for classifica-

tion purposes only with respect to certain aspects, e.g. dis-

tance, information theory, etc. Accordingly, the resulting 

feature selections may only be adapted to a narrow range of 

classifiers. Our approach jointly considers two relevance 

measures, i.e. mutual information (MI) and Relief weight 

(RW) so that the features are assessed more comprehensive-

ly. It requires not only the selection to hold sufficient MI, it 

also forces the features in the selection to have large RWs. 

In order to avoid an NP hard problem, a heuristic searching 

scheme is adopted, i.e. sequential forward searching. More-

over, the selection’s cardinality can be determined automati-

cally. Finally, this approach is applied to the underwater 

object classification and its classification results are com-

pared to those of filter methods in the literature. 

 
    

Index Terms— mutual information, Relief weight, fil-

ter method for feature selection, feature extraction, pattern 

recognition 

 

1. INTRODUCTION 

 

In the recent years, with the help of the modern synthetic 

aperture sonar (SAS) systems mounted on autonomous 

underwater vehicles (AUVs), the automatic target recogni-

tion (ATR) gains increasing attention. The ATR process is 

mainly composed of 3 steps: mine-like objects (MLOs) 

detection, feature extraction and mine type classification. 

First of all, a SAS image of a large region is scanned. The 

areas with suspicious objects are detected and marked. Then 

features describing the shape of objects and the textures of 

the sediments are extracted in these marked areas. Since 

there are a huge number of features available in the litera-
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ture, we obtain a very large feature set. Due to the curse of 

dimensionality, the dimension of the space induced by the 

feature set should be reduced, e.g. dimensionality reduction, 

feature subset selection, etc. The principle component anal-

ysis (PCA) is a well known technique belonging to the di-

mensionality reduction. However, it is both sensitive to the 

data type and vulnerable to the scaling of the original data. 

Therefore, we prefer the feature subset selection, which 

draws a suitable subset out of the complete feature set. (e.g. 

filter and wrapper [1]). The problem of wrapper methods is 

that they highly depend on the chosen learning algorithm 

and are usually very time-consuming. Hence, filter methods 

should be favored. Instead of individual learning algorithms 

they use evaluation criteria such as mutual information 

(MI), Relief weight (RW) [2], etc. The MI is independent of 

the feature distribution and investigates the amount of clas-

sification relevant information contained in the features. It is 

widely adopted by the filter methods [3]-[5] like RELFSS, 

MIFS, and MISF-U. As for RELFSS, the MI of feature 

selections is normalized against their Shannon entropy (SE). 

A feature is selected according to the additional classifica-

tion information that it can contribute. However, the normal-

ization against SE implicitly incorporate criterion of mini-

mum entropy. There is a risk of underfitting of the feature 

selection. MIFS and MIFS-U consider the sum of the MI of 

individual features and the redundancy between features is 

subtracted from the sum of MI. The problem is that the 

redundancy is not necessarily 100% classification relevant. 

Thus, the additional information which can be contributed 

by candidate features can be underestimated after removing 

the redundancy.  

Furthermore, the dependency between selection and 

class index coded in terms of information entropy can be 

arbitrary. It is not always interpretable by classifiers. There-

fore, we introduce a distance based measure, RW, in the 

feature selection process. Because of its efficiency a sequen-

tial forward searching (SFS) scheme is employed. Within 

every SFS cycle, there are two selection steps, i.e. RW se-

lection and MI selection. Every selected feature should 

firstly pass the RW selection, which provides a set of fea-

tures with relatively larger RWs. Then MI selection is ap-
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plied to the set obtained in RW selection. Only the feature, 

which can contribute the largest MI to the feature selection 

in this set, will be considered as a useful feature and added 

to our selection. The evaluation is no longer constrained in 

individual aspects but the balance between them. The MI 

selection takes place after RW selection since the RW 

measures only the quality of individual features and pro-

vides nothing about the sufficiency of the selection. The MI 

does not only take care of the information contribution of 

incoming features but also the sufficiency of the selection. 

Hence, our approach can determine the cardinality of the 

feature selection automatically. This makes our feature 

selection process much faster than those filter methods 

which require manually setting the number of selected fea-

tures. Finally, our approach is applied to the underwater 

object classification. Its classification results are then com-

pared to those using MIFS, MIFS-U, RELFSS and mRMR 

[6].  

 

2. FEATURE SELECTION ALGORITHM 
 

Let � = ���,	�
,… ,	��
 be the complete feature set of �	features in total. A feature selection is a set denoted as 

� = ����|�� ∈ ���, … ,���� ⊆ �1, … ,�
�, where �� = |�| is 

the number of selected features. A feature can be viewed as 

a random variable (RV). Therefore the feature value of a 

given instance in the database is a realization of the RV. 

Accordingly, ��(�)
 is the !-th realization/instance of ��, 

for	1 ≤ � ≤ � and 1 ≤ ! ≤ #. Furthermore, let $ denote 

the class index, and %(�) ∈ & is its !-th realization with & is 

the set of all possible class indices.  

 

2.1. Relief Weight  

 

The Relief algorithm given in [2] is a prominent filter selec-

tion method which evaluates individual features with a dis-

tance based relevance measure, RW. However, it was de-

veloped for binary-class problems. In this paper it is extend-

ed to the multiclass case. When feature ��	is taken into 

account, we find in the neighborhood of its !-th realization 

(��(�)
) 2 neighbors. One (��('())) is its nearest neighbor in the 

same class of ��(�)
, and the other (��(*(+)

) is the nearest 

neighbor belonging to the classes which are different from 

the one of ��(�)
. Employing the Euclidean distance, the 

weight assigned to the instance	! is given as  

	 ,�(!) = 	-��(�) − ��(*(+)- − -��(�) − ��('())-.	 (1)

Then the RW assigned to the feature �� is  

 /� = 0 ,�(!)
1

�2�
. (2)

The RW provides straight-forward information about 

whether the objects of different classes are overlapped or 

not in terms of the input feature. Accordingly, the larger the 

RW is, the better the feature is. Since the physical meaning 

of the individual features is various, their feature values can 

cover very different ranges, e.g. integers within the interval 

of [0,	100], continuous probabilities between 0 and 1, etc. 

The resulting RWs could belong to different scales. The 

comparison between RWs of features is unfair. Thus, it is 

indispensible to convert the values of all the features into the 

same range. In this paper, all the features are scaled into the 

interval [0,1] before RW computation. 

 

2.2. Information Measure 

 

The MI  

 5(��, $) = 6(��) − 6(��|$), (3)

is a remarkable measure to investigate the classification 

relevant information contributed by features, where	6	de-

notes the Shannon entropy function. Moreover, the MI of a 

set of features is more important for us than the one of indi-

vidual features given in (3), since the cardinality of �, ��, is 

normally greater than 1. Therefore the joint mutual infor-

mation (JMI) is required [7]. In the space 7 for dim(7) =�� induced by �, an instance in the database is a point de-

noted by 8� = 9��, … ,���:;. Hence, the JMI between � and 

$ can be defined as 

 5(�,$) = 0 0<(8�,	%) log
 @ <(8�,	%)
<(8�)<(%)AB∈&8�∈7

.	 (4)

We use the implementation given by Pocock in [8] to obtain 

the MI and JMI.  

The removal of redundancy between individual fea-

tures is an important issue in the methods such as MIFS, 

MIFS-U and mRMR. However, they all neglect the fact that 

the redundant information between features is not necessari-

ly completely the classification relevant information. More-

over, complementary classification information can still be 

found among those features which possess high redundancy 

between each other [9]. In Fig. 1 although the redundancy is 

high, the additional information obtained from ��	is still 

significant. Therefore, what does matter is the amount of 

additional information contributed by feature ��, which is 

quantified by 

 5add(��) = 5(��, ��
, $) − 5(�, $). (5)

 

 

Fig. 1. Illustration of mutual information 
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2.3. Sequential Forward Searching With Combined Cri-

terion 

 

The complete searching space in our application is the set of 

all possible combinations of �� features out of �(1 ≤ �� ≤�). It causes an NP hard problem. We assume that our se-

lection � is composed of only a small part of the complete 

feature set �. Thus a SFS scheme is chosen to overcome 

this difficulty.  

As already briefed in the introduction, there are two se-

lection steps in every SFS cycle. In the RW selection, �cho 

features, which possess larger RWs than the others, are 

picked up as candidate features from the set �\�. In the MI 

selection, only the candidate, which maximizes the 5add in 

(5), is chosen to be added to the selection �. The proposed 

algorithm called sequential forward searching scheme using 

Relief weight and mutual information (SFS-ReMu) is sum-

marized as follows, 

� begin, � is initialized as an empty set, and hence the 

remaining feature set �H = �. Let �remain = |�′|. 
o do 		�remain = �remain − 1 

• calculate the /� of feature ��, ∀	�� ∈ �′, 
• find the �cho features in �′, which have the 

largest RWs, to compose a temporal set �P,  

• calculate the 	5add(��Q), ∀	��Q ∈ �P 

• find the feature	�R , where  �R = argmaxTUQ∈�� 5add(��Q), 

• Add �R  to �, and �H ≔ �H\�R,  

if |5(�,$) − 5(�,$)| < X, then break loop. 

o until �cho > �remain 

� end 

 

There is a free parameter �cho	in this approach. It con-

trols the cardinality of the set �P, which contains the candi-

date features obtained in RW selection. If �cho approaches #, SFS-ReMu behaves similarly as those methods which 

only maximize MI. On the contrary if it is close to 1, SFS-

ReMu is similar to the Relief algorithm. We will discuss the 

choice of �cho	in the next section. 

 

3. DATABASE AND NUMERICAL TESTS 

 

3.1. Database Description  

 

The database for testing the feature selection methods is 

provided by ATLAS ELEKTRONIK. There are in total 210 

windows/instances, # = 210. Within every window there is 

one object: a truncated cone mine, a cylinder mine, or a 

stone as shown in Fig. 2.  

The shape features in [10] are chosen to compose our 

feature set. Owing to the imperfectness of the contour ex-

traction algorithms, the contours are smoothed before shape 

feature extraction. We also choose the mean value and the 

skewness of the power spectrum of the centroid distance of 

the object contours as shape features. In addition, the ring 

projection  

 [(\) = ] ^(\, _)`_
a	
b

	, (6)

proposed in [11] is used, where ^(\, _) is a binary valued 

function in polar coordinates,  

 c^(\,	_) = 1,	if	(\,	_)	locates within the contour

^(\,	_) = 0,	otherwise																																													 d . (7)

The skewness and weighted mean value of	[(\) are adopted 

as our shape features. The features of highlights and shad-

ows are extracted separately, and those characterizing the 

relationship between highlights and shadows are included as 

well. Therefore we have totally 61 shape features. Further-

more, we take the co-occurrence matrix [12] and gray level 

run length matrix [13] to describe the texture. Due to the 

lack of a priori knowledge about parameter settings provid-

ing significant features, we allowed simultaneously several 

settings. Finally, we have 300 texture features. Thus there 

are totally 361 features,		� = 361, in our feature set �. 

 

Fig. 2. Examples of objects. 

 

3.2. Numerical Tests 
 

First of all, the SFS-ReMu is applied to the database and we 

obtain several selections with different	�Bgh. Then classifi-

cation tests are carried out with these selections. In the tests, 

five classifiers are used. PNN [14] is the probabilistic neural 

networks, KNN is the i-nearest neighbors, and KNN-DST 

[15] is the KNN assisted by Dempster-Shafer evidence 

theory. SVM-Gaussian and SVM-Poly denote the support 

vector machine (SVM) using a Gaussian and a polynomial 

kernel respectively. The classification rate j is defined as  

 j = !correct# , (8)

where !correct	is the number of correctly classified instanc-

es. We use the leave-one-out scheme to make sure that eve-

ry instance in the database is tested. In order to make the 

comparison among classifiers fair, every classifier is proper-

ly tuned so that it is able to achieve its best classification 

rate (jb) by using the features provided by individual feature 

selection methods.  
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�Bgh 1 2 3 4 5 6 

�P 8 11 10 9 8 8 

Table 1. The number of selected features, SFS-ReMu. 

�Bgh KNN 
KNN-

DST 
PNN 

SVM-

Gaussian 

SVM-

Poly 

1 0.7619 0.7714 0.7571 0.7952 0.7667 

2 0.8095 0.8095 0.8095 0.819 0.7857 

3 0.819 0.8048 0.7952 0.8238 0.7571 

4 0.819 0.8048 0.7952 0.8238 0.781 

5 0.819 0.8 0.7952 0.8333 0.8048 

6 0.7905 0.7619 0.781 0.819 0.7857 

Table 2. The best classification rates (mb), SFS-ReMu. 

In Table 1 the cardinality of the selection given by 

SFS-ReMu is listed. Only a small part of the features are 

chosen. It benefits the classification with less computation 

load and also avoids encountering the curse of dimensionali-

ty. In Table 2, the jb of various classifiers using features 

selected by SFS-ReMu are recorded. The rows denote the 

results for the different �cho settings, and the columns corre-

spond to the classifiers. The best classification results are 

underlined in each column.  

As discussed in the previous section, when �cho = 1, 

SFS-ReMu is very similar to the Relief algorithm, only 

those features with largest RWs are chosen. Its classification 

performance is accordingly not optimal. Moreover, when 

the �cho increases, our method behaves more similar as MI 

based feature selection methods. As shown in the last row of 

Table 2, there is an obvious performance degradation when �cho = 6. Therefore, in the following discussion, only those 

results associated with �cho = 2,	3,	4,	and 5 are taken into 

account. When concentrated on the underlined results, we 

find that KNN-DST and PNN appreciate the setting of �cho = 2. It means that they are more inclined to choose the 

features with larger RWs. On the contrary, the features 

adapted to KNN, SVM-Gaussian and SVM-Poly should also 

contain rich MI in addition to large RWs. Thus it is prefera-

ble to include more features in the RW selection, and ac-

cordingly the �cho is increased to 5. 
Secondly, four algorithms known from the literature 

are implemented for comparison. Among them, the RELFSS 

selects the optimal features according to a MI based evalua-

tion measure and it can also determine the cardinality of the 

selection automatically. The resulting �� is 17. The jb for 

the features obtained by RELFSS is listed in Table 3. How-

ever, compared with those in Table 2, RELFSS provides 

selections leading to a very poor classification performance. 

 

 
KNN KNN-DST PNN 

SVM-

Gaussian 

SVM-

Poly jp 0.6095 0.5905 0.6048 0.5905 0.3333 

Table 3. The best classification rate (mb), RELFSS. 

KNN KNN-DST PNN 
SVM-

Gaussian 

SVM-

Poly 

0.819(8) 0.8238(8) 0.8095(8) 0.8475(5) 0.8048(18) 

Table 4. The best classification rates (mb) and the number of fea-

tures (q�), mRMR. 

r KNN KNN-DST PNN 
SVM-

Gaussian 

SVM-

Poly 

0 0.7667(17) 0.7762(9) 0.7571(10) 0.8048(3) 0.7857(15) 

0.3 0.7619(15) 0.8048(7) 0.7619(7) 0.8619(7) 0.7619(12) 

0.5 0.7905(2) 0.7905(2) 0.7857(2) 0.8048(5) 0.8286(2) 

0.7 0.7905(2) 0.7857(2) 0.7762(4) 0.7905(5) 0.8(10) 

1 0.7238(1) 0.6333(3) 0.719(1) 0.7238(2) 0.6429(19) 

Table 5. The best classification rates (mb) and the number of fea-

tures (q�), MIFS 

r KNN KNN-DST PNN 
SVM-

Gaussian 

SVM-

Poly 

0 0.7667(17) 0.7762(9) 0.7571(10) 0.8048(3) 0.7857(15) 

0.3 0.819(11) 0.8286(11) 0.8095(11) 0.8667(10) 0.8095(19) 

0.5 0.7762(2) 0.7857(7) 0.7667(7) 0.8524(7) 0.8(8) 

0.7 0.7905(6) 0.7857(6) 0.7619(6) 0.8476(6) 0.7905(10) 

1 0.781(5) 0.7857(4) 0.7619(4) 0.8476(5) 0.7524(9) 

Table 6. The best classification rates (mb) and the number of fea-

tures (q�), MIFS-U. 

The classification results of mRMR, MIFS and MIFS-

U are summarized in Table 4, Table 5 and Table 6 respec-

tively. All of them require a manual setting of ��. Peng et 

al. suggest in [6] trying a number of possible values of �� 

and choose the one with the best classification rate. It is 

found in our numerical study that the selection cardinality ��, which is larger than 20, can cause a dramatic perfor-

mance degradation for the classification using our database. 

Accordingly, we try �� from 1 to 20. Hence for every classi-

fier, there are 20 candidate feature selections serving as 

inputs. All these candidates are then fed into the classifier. 

The candidate with the highest jb is chosen. This jp is rec-

orded in the tables and so does its associated �� in the 

brackets. Consequently, these three methods are very time-

consuming due to the searching of optimal �� across the 20 

candidates. Obviously as shown in the tables, the optimal �� 

is classifier-dependent. Hence, a fixed global setting of �� 

for all the 5 classifiers would be improper.  

Besides, the parameter r, with 0 ≤ r ≤ 1, in Table 5 

and Table 6 controls the tolerance of redundancy between 

features in MIFS and MIFS-U. When r = 0, the redundan-

cy between features is completely ignored.  

In summary, SFS-ReMu provides a fast feature selec-

tion procedure compared with mRMR, MIFS and MIFS-U. 

Its classification performance is also comparable to those of 

mRMR, MIFS and MIFS-U, and even outperforms them in 

most of the cases. Besides, PNN and KNN-DST prefer low 

value of �cho, e.g. �cho = 2, while KNN, SVM-Gaussian 

and SVM-Poly favor higher value of �cho such as �cho = 5. 
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4. CONCLUSION AND FEATURE WORK 

 

The filter method for feature selection, SFS-ReMu, is 

presented. Compared with the existing methods, both MI 

and RW are considered in the feature relevance assessment 

steps. It provides us a fast feature selection procedure with 

an acceptable classification performance.  

It is foreseen that we should try to build an evaluation 

function keeping the balance between mutual information 

and Relief weights so that the significance of individual 

measures in the joint consideration is adjustable. It is then 

possible to feasibly adapt the selection to different 

application.  
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