
A CLT FOR THE G-MUSIC DOA ESTIMATOR

P. Vallet 1,2, X. Mestre 2, P. Loubaton 1

1 IGM (CNRS UMR 8049), 5 Bd. Descartes 77454 Marne-la-Vallée (France)
3 CTTC, Av. Carl Friedrich Gauss 08860 Castelldefels, Barcelona (Spain)

pascal.vallet@univ-mlv.fr, xavier.mestre@cttc.cat, philippe.loubaton@univ-mlv.fr

ABSTRACT

Subspace methods (e.g. MUSIC) are widely used in the con-
text of DoA estimation using an array of M antennas. These
methods perform well as long as the number of available sam-
ples N is much larger than M . However, their performance
severely degrades when N is of the same order of magnitude
than M . In this context, a DoA estimation method (called
”G-MUSIC”), based on a new localization function estimate,
was recently derived and shown to outperform the traditional
methods for reasonable values of M,N . The consistency of
both the localization function and DoA estimators was ad-
dressed in the asymptotic regime where M,N converge to
infinity such that M/N converges to a positive constant. This
paper addresses Central Limit Theorems for both the localiza-
tion function and DoA estimators, in the previous asymptotic
regime. Simulations confirm the validity of the results.

Index Terms— DoA, MUSIC, CLT, Random Matrix
Theory.

1. INTRODUCTION

The problem of estimating the Direction of Arrival (DoA) of
K source signals from a set of N noisy observations collected
by an array of M sensors has been widely studied in the past,
and several algorithms have been proposed, among which the
most popular are the so-called subspace methods, which are
generally prefered over the Maximum Likelihood methods,
because they offer a good trade-off between performances
and computation costs. The traditional subspace estimation
methods, e.g. the MUSIC method (Schmidt [1]), have been
widely studied in the literature (see Stoica [2]), and the per-
formances mainly characterized, in terms of consistency and
asymptotic Gaussianity, in the asymptotic regime where the
number of samples N converges to infinity while the num-
ber of antennas M remains constant. In practice, these tra-
ditional estimators are used in the context where N >> M ,
and perform well in this case. However, there exists several
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situations where using such an amount of samples is not con-
ceivable, for example when the signals are stationnary only
for a short period of time, or simply if the number of antennas
is large. In the context where N is of the same order of mag-
nitude than M , the performances of the traditional estimators
severely degrade, mainly because they depend on the sample
covariance matrix of the observations, which does not esti-
mate properly the true covariance matrix of the observations
in this context. Recently, based on random matrix theory re-
sults, a new subspace DoA estimation method (”G-MUSIC”)
was proposed, in the context of Gaussian temporally uncorre-
lated signals (see Mestre & Lagunas [3]), and later general-
ized to the case of deterministic unknown signals (see Vallet
et al. [4]). In practice, this estimator outperforms the tradi-
tional ones, for realistic values of M,N . The G-MUSIC DoA
estimator is based on a new estimator of the localization func-
tion, consistent in the asymptotic regime where M,N → ∞
in such a way that M

N → c > 0. The consistency of the DoA
estimates, not addressed in [4], was later proved in Hachem
et al. [5]. Recently, Mestre et al. [6] studied the asymptotic
fluctuations of the G-MUSIC localization function estimator,
and derived an expression of the Mean Square Error (MSE),
in terms of a line integral which can be evaluated numerically.
This work considered the estimator in [3], based on the con-
straint that the source signals are temporally uncorrelated. In
this paper, we follow the same approach than [6] and analyze
the asymptotic fluctuations of both the localization function
and DoA estimators of [4], and also propose an expression of
the MSE in terms of a line integral. Moreover, we provide an
explicit approximation of this integral, in terms of eigenvalues
and eigenvectors of the covariance matrix of the observations,
which is accurate when the number of sources K is such that
K << N . Some numerical examples are provided, which
validate the results obtained.

The paper is organized as follows. In section 2, we in-
troduce the model of signals used throughout the paper, and
recall the problem of subspace DoA estimation. In section 3,
we recall the main results concerning the G-MUSIC estima-
tor. In section 4, we provide Central Limits Theorems (CLT)
for both the G-MUSIC localization and DoA estimators, and
give explicit approximations of the MSE. Finally, some nu-
merical results are provided in section 5.
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2. MODEL OF SIGNALS AND THE MUSIC METHOD

We assume that K narrow-band source signals are received by
an array of M sensors, with K < M . At time n, the received
signal writes

yn = Asn + vn, (1)

where A = [a(θ1), . . . ,a(θK)] is the matrix of the steer-
ing vectors a(θ1), . . . ,a(θK) associated with the K sources
with DoA θ1, . . . , θK . The vector sn represents the transmit-
ted signals, and is assumed deterministic non-observable, and
vn ∼ NCM

(
0, σ2IM

)
represents the additive white Gaussian

noise. 1 The steering vectors are assumed to follow the usual
exponential model

a(θ) =
1√
M

[
1, eiθ, . . . , ei(M−1)θ

]T
, (2)

for all θ ∈ [−π, π], which corresponds to a uniform lin-
ear array of antennas. We assume that N > M samples
of the previous signal (1) are collected in the matrix YN =
[y1, . . . ,yN ], which can be written as

YN = ASN +VN , (3)

with SN = [s1, . . . , sN ] and VN = [v1, . . . ,vN ]. We as-
sume the matrix SN to be full rank K, and thus ASN has
rank K. We denote by 0 = λ1,N = . . . = λM−K,N <

λM−K+1,N < . . . < λM,N the eigenvalues of ASNS∗
NA∗

N
(the non-zero eigenvalues are assumed to have multiplicity
one without loss of generality). The associated eigenvec-
tors are denoted u1,N , . . . ,uM,N . In the same way, we de-
note by λ̂1,N , . . . , λ̂M,N and û1,N , . . . , ûM,N the eigenvalues
and associated eigenvectors of the sample covariance matrix
YNY∗

N

N .
The MUSIC method is based on the observation that the

DoA θ1, . . . , θK are zeros the localization function

ηN (θ) = a(θ)∗ΠNa(θ), (4)

where ΠN =
∑M−K

k=1 uk,Nu∗
k,N is the projector onto the

noise subspace. The K DoA are estimated by taking the K
deepest minima of an estimated localization function, which
is given, in the context of the MUSIC method, by

θ 7→ a(θ)∗Π̂Na(θ), (5)

where Π̂N =
∑M−K

k=1 ûk,N û∗
k,N is the sample estimate of

ΠN . If lim supN ‖SNS∗
N

N ‖ < ∞, the law of large number
implies that almost surely (a.s.),∥∥N−1YNY∗

N −
(
N−1ASNS∗

NA∗ + σ2I
)∥∥ −→ 0 (6)

1NRk (α,Γ) represents the k-variate normal distribution with mean α ∈
Rk and covariance Γ, and x+ iy follows the NCk (α+ iβ,Γ) distribution
if x,y are independent and x ∼ NRk (α, Γ

2
), y ∼ NRk (β, Γ

2
).

as N → ∞ while M is fixed, which ensures that (5) con-
sistently estimates (4). However, in the asymptotic regime
where M,N → ∞ while cN = M/N → c > 0, the previous
convergence is not valid, and (5) is not consistent anymore.

3. THE G-MUSIC METHOD

From now on, we consider the following regime: we assume
that M = M(N), K = K(N) are functions of N , such that
cN = M/N →N c ∈ (0, 1), and K < M . We also assume
that lim supN ‖SNS∗

N

N ‖ < ∞. In general settings, we will
consider the consistent estimation of

ηN = d∗
1,NΠNd2,N , (7)

where d1,N ,d2,N ∈ CM are deterministic vectors such that

lim sup
N→∞

max {‖d1,N‖, ‖d2,N‖} < ∞. (8)

Before describing the G-MUSIC estimator, we first review
some well-known results concerning the asymptotic be-
haviour of the sample eigenvalues. Let µ̂N = 1

M

∑M
k=1 δλ̂k,N

be the empirical eigenvalue distribution of YNY∗
N

N , where δx
is the Dirac measure at x. The Stieltjes transform of µ̂N is
given by

m̂N (z) =

∫
R

dµ̂N (λ)

λ− z
=

1

M
TrQN (z),

with QN (z) =
(

YNY∗
N

N − zI
)−1

. From Dozier & Silver-
stein [7] [8], there exists a deterministic probability measure
µN , with support supp(µN ) ⊂ R+ = [0,∞), such that a.s.,

µ̂N − µN
w−−−−→

N→∞
0,

where ”w” denotes the weak convergence. Equivalently, for
z ∈ C\R+, m̂N (z) − mN (z) →N 0 a.s., where mN (z) =∫
R

dµN (λ)
λ−z is the Stieltjes transform of µN , which satisfies the

equation mN (z) = 1
MTr TN (z) with

TN (z) =
(
1 + σ2cNmN (z)

)(ASNS∗
NA∗

N
− wN (z)I

)−1

and

wN (z) = z
(
1 + σ2cNmN (z)

)2
− σ2(1− cN )

(
1 + σ2cNmN (z)

)
.

From [4], the support of µN is given by

supp(µN ) =

Q⋃
q=1

[
x−
q,N , x+

q,N

]
,
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ϑN (k, l) =

− Nδ(k, l)

2(M −K)
+

σ2

π

∫ x+
1,N

x−
1,N

Im (wN (x)) |w′
N (x)|2

(
|wN (x)|2 ṽN (x) + λk,Nλl,NvN (x) + (λk,N + λl,N )(1− uN (x))

)
|λk,N − wN (x)|2 |λl,N − wN (x)|2

dx, (13)

with 1 ≤ Q ≤ K + 1 and where x−
q,N , x+

q,N are the 2Q
positive local extrema of the function

φN (w) = w(1− σ2cNfN (w))2

+ σ2(1− cN )(1− σ2cNfN (w)),

where fN (w) = 1
M

∑M
k=1

1
λk,N−w , and which satisfy x−

q,N <

x+
q,N < x−

q+1,N . From [8], mN (z) can be extended contin-
uously to the real axis when z ∈ C+ → x ∈ R, and we
denote the limit mN (x). We define wN (x) in the same way.
To introduce the G-MUSIC method, we need to formulate an
additional assumption related to the separation between the
signal and noise eigenvalues.

A-1 There exists t−1 , t
+
1 , t

−
2 , t

+
2 > 0 such that

t−1 < lim inf
N→∞

x−
1,N ≤ lim sup

N→∞
x+
1,N < t+1

t−2 < lim inf
N→∞

x−
2,N ≤ lim sup

N→∞
x+
Q,N < t+2 ,

and for N large enough, wN (t−2 ) < λM−K+1,N .

Assumption A-1 is related with the Signal to Noise Ratio
(SNR) when K is independent of N and λM−K+k,N →N

γk for k = 1, . . . ,K, if we define the SNR to be the ratio
γK

σ2 . Indeed, it is shown in this case (see Loubaton & Vallet
[9]) that Assumption A-1 is equivalent to the condition γK

σ2 >√
c. Assumption A-1 has also important consequences on the

behaviour of the sample eigenvalues, and implies that a.s., the
sample eigenvalues split in two groups, namely

t−1 < lim inf
N→∞

λ̂1,N ≤ lim sup
N→∞

λ̂M−K,N < t+1 , (9)

and lim infN λ̂M−K+1,N > t−2 . From [4], under assumption
A-1, (7) can be expressed as

ηN =
1

2πi

∮
∂R

d∗
1,NTN (z)d2,N

w′
N (z)

1 + σ2cNmN (z)
dz,

where ∂R is the clockwise oriented boundary of the rectangle

R =
{
x+ iy : x ∈

[
t−1 − ε, t+1 + ε

]
, y ∈ [−δ, δ]

}
,

for some ε > 0 s.t. 0 < t−1 −ε, t+1 +ε < t−2 and δ > 0. Define
ŵN (z) = z(1 + σ2cNm̂N (z))2 − σ2(1 + σ2cNm̂N (z)). In

[4], it is shown that

sup
z∈∂R

∣∣∣∣∣d∗
1,NQN (z)d2,N

ŵ′
N (z)

1 + σ2cNm̂N (z)

− d∗
1,NTN (z)d2,N

w′
N (z)

1 + σ2cNmN (z)

∣∣∣∣∣ a.s.−−−−→
N→∞

0.

This of course implies that η̂N − ηN →N 0 a.s., where

η̂N =
1

2πi

∮
∂R

d∗
1,NQN (z)d2,N

ŵ′
N (z)

1 + σ2cNm̂N (z)
dz (10)

is therefore a consistent estimator of (7). We notice that the in-
tegrand in (10) is meromorphic with poles at λ̂1,N , . . . , λ̂M,N

as well the zeros of the function z 7→ 1 + σ2cNm̂N (z), de-
noted ω̂1,N , . . . , ω̂M,N . It is shown in [4] that under assump-
tion A-1, these zeros follow a property similar to (9), i.e a.s.

t−1 < lim inf
N→∞

ω̂1,N ≤ lim sup
N→∞

ω̂M−K,N < t+1 , (11)

and lim infN ω̂M−K+1,N > t−2 . Thus, all the poles can be
located with respect to the integration contour R, which en-
sures that the integral can be solved using residue theorem, to
obtain an explicit formula in terms of ûk,N , λ̂k,N and ω̂k,N

(see [4]). By setting d1,N = d2,N = a(θ), we of course
obtain a consistent estimator η̂N (θ) of the localization func-
tion ηN (θ) defined in (4). The G-MUSIC DoA estimator are
thus defined as the K deepest local minima of θ 7→ η̂N (θ),
and we will denote these estimators θ̂1,N , . . . , θ̂K,N . In [5],
it was further shown that these estimators are consistent with
the property

N
(
θ̂k,N − θk

)
a.s.−−−−→

N→∞
0. (12)

4. 2ND ORDER ANALYSIS

In this section, we provide a CLT for both the localization
function (10) and the DoA estimators θ̂1,N , . . . , θ̂K,N .

Before stating the main result, we need to introduce some
new quantities. For x ∈ R, we define

uN (x) =
σ2

N

M∑
k=1

λk,N

|λk,N − wN (x)|2

as well as

vN (x) =
σ2

N

M∑
k=1

1

|λk,N − wN (x)|2
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ϑN (k, l) =
σ4cN

(
λk,Nλl,N + (λk,N + λl,N )σ2 + σ4

) (
λk,Nλl,N + σ4cN

)
2
(
λ2
k,N − σ4cN

)(
λ2
l,N − σ4cN

)
(λk,Nλl,N − σ4cN )

(1− δ(k, l)) + εN (k, l), (16)

and ṽN (w) = vN (x) + σ2(1 − cN )|wN (x)|−2. Note that
uN (x), vN (x) and ṽN (x) are well-defined since wN (x) 6∈
{λ1,N , . . . , λM,N} for all x ∈ R (see [4]). For 1 ≤ k, l ≤ M ,
we define ϑN (k, l) by the formula (13) given at the top of
the page, where δ(k, l) = 1 if k, l ∈ {1, . . . ,M −K} and 0
otherwise. Finally, we define

ΓN (k, l) = Re
(
η
(1,2)
k,N η

(1,2)
l,N

)
+

η
(1,1)
k,N η

(2,2)
l,N + η

(1,1)
l,N η

(2,2)
k,N

2

where η
(i,j)
k,N = d∗

i,Nuk,Nu∗
k,Ndj,N , and

ΓN =
M∑
k=1

M∑
l=1

ϑN (k, l)ΓN (k, l). (14)

The main result is the following.

Theorem 1. Assume A-1 holds. Then ϑN (k, l) ≥ 0 for all

k, l and 2 Re (η̂N − ηN ) = OP

(√
ΓN

N

)
+ oP

(
1√
N

)
. If

lim inf
N→∞

ΓN > 0, (15)

we have
√
NRe (η̂N − ηN )√

ΓN

D−−−−→
N→∞

NR (0, 1) .

Moreover, when K is independent of N , ϑN (k, l) can be
approximated by (16) given at the top of the page, where
maxk,l |εN (k, l)| →N 0.

The proof of theorem 1 is omitted due to space con-
straints. Since |Re(z1z2)| ≤ 1

2

(
|z1|2 + |z2|2

)
for z1, z2 ∈ C,

we have of course ΓN (k, l) ≥ 0. We remark that the
main purpose of (15) is to ensure that the fluctuations of
η̂N − ηN are of the order O

(
N−1/2

)
. Indeed, there ex-

ist several situations where the fluctuations can be faster
than O

(
N−1/2

)
, e.g. when K is independent of N and

d1,N = d2,N = u1,N , then (16) implies ΓN = O
(
N−1

)
and Re (η̂N − ηN ) = oP

(
1√
N

)
. Moreover, when K is

independent of N , assumption A-1 also implies that

lim inf
N→∞

min
k,l≥M−K+1

ϑN (k, l) > 0,

and (15) is therefore ensured by the sufficient condition

lim inf
N→∞

Re

((
d∗
1,NΠ⊥

Nd2,N

)2
)

+ d∗
1,NΠ⊥

Nd1,Nd∗
2,NΠ⊥

Nd2,N > 0, (17)

2OP(1) represents boundedness in probability (tightness).

where Π⊥
N = I−ΠN = A (A∗A)

−1
A∗ is the projector onto

the signal subspace. We are now in position to obtain from
theorem 1 a CLT for the localization function estimate (10)
and we assume for the remainder that K is independent of N .
If d1,N = d2,N = a(θ) with θ ∈ [−π, π]\ {θ1, . . . , θK}, it
is easy to see that a(θ)∗Π⊥

Na(θ) →N 0, and thus ΓN →N 0.
On the other hand, if d1,N = d2,N = a(θn) and ηk,N (θn) =
a(θn)

∗uk,Nu∗
k,Na(θn), for n = 1, . . . ,K, it is straightfor-

ward to see that (17) is satisfied in this case. This leads the
following corollary.

Corollary 1. Under assumption A-1 and if K is independent
of N ,

√
Nη̂N (θk)√

2
∑

k,l ϑN (k, l)ηk,N (θn)ηl,N (θn)

D−−−−→
N→∞

NR (0, 1) ,

and for θ ∈ [−π, π]\ {θ1, . . . , θK},

η̂N (θ)− ηN (θ) = oP

(
1√
N

)
.

We finally provide the CLT for the DoA estimators. For
that purpose, we use the classical ∆-method. Using (12) and
a Taylor expansion around θn (n = 1, . . . ,K), we obtain a.s.
that

η̂′N

(
θ̂n,N

)
= η̂′N (θn) +

(
θ̂n,N − θn

)
η̂
(2)
N (θn)

+
1

2

(
θ̂n,N − θn

)2

η̂
(3)
N

(
θ̃n,N

)
,

for N large enough, where θ̃n,N is between θ̂n,N and θn.

Since by definition, we have η̂′N

(
θ̂n,N

)
= 0, we thus ob-

tain

θ̂n,N − θn = − η̂′N (θn)

η̂
(2)
N (θn) +

θ̂n,N−θn
2 η̂

(3)
N

(
θ̃n,N

) . (18)

We first characterize the asymptotic behaviour of the denom-
inator of (18). Since supθ

∥∥a(k)(θ)∥∥ ∼ Mk, we deduce from

(9) and (11) that N−3η̂
(3)
N

(
θ̃n,N

)
= O(1) a.s. Therefore,

(12) implies

(
θ̂n,N − θn

) η̂
(3)
N

(
θ̃n,N

)
N2

a.s.−−−−→
N→∞

0.

From section 3, we can write

1

N2
η̂
(2)
N (θn) = 2

a′(θn)
∗

N
ΠN

a′(θn)

N
+ oP(1),
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and thus we obtain

N3/2
(
θ̂n,N − θn

)
= −

1√
N
η̂′N (θn)

2a′(θn)∗

N ΠN
a′(θn)

N + oP(1)
. (19)

Finally, a straightforward application of theorem 1 to the nu-
merator of (19), by setting d1,N = N−1a′(θn) and d2,N =
a(θn) leads the following result.

Corollary 2. Assume A-1 and K independent of N . Then

N3/2

√√√√(
d∗
1,NΠNd1,N

)2

ΓN

(
θ̂n,N − θn

)
D−−−−→

N→∞
NR(0, 1),

where ΓN is defined by (14) by taking d1,N = N−1a′(θn)
and d2,N = a(θn).

5. SIMULATIONS

In this section, we illustrate numerically the result of corol-
lary 2. We consider M = 20, N = 40, and 2 sources with
DoA θ1 = 0.5 and θ2 = 1. The steering vectors follow the
model (2). The rows of matrix SN are realizations of mutu-
ally independent Gaussian AR(1) processes with correlation
coefficient 0.9. The SNR is defined to be −10 log(σ2). In all
the following experiments, we use the formula (13) given in
theorem 1 to compute the variance ΓN .

In figure 1, we have plotted the histogram of N3/2(θ̂1,N−
θ1) (5000 trials) as well as the density of a Gaussian distribu-
tion with zero mean and variance (d∗

1,NΠNd1,N )−2ΓN , for
a SNR of 10 dB.

−10 −8 −6 −4 −2 0 2 4 6 8
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0.05

0.1
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Histogram (DoA)
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Fig. 1. Histogram and theoret. distrib. of N3/2(θ̂1,N − θ1)

In figure 2, we have plotted the theoretical and empirical
MSE of the first angle estimate, i.e E[(θ̂1,N−θ1)

2], versus the
SNR. The Cramer-Rao Bound (CRB), derived in [2], is also
represented. Assumption A-1 is fulfilled from SNR=4dB.

Figures 1 and 2 show that the results obtained in corollary
2, as well as the expression of the variance ΓN , are accurate
for realistic values of M,N .

2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

SNR

M
S

E

 

 

Empirical MSE

Theoretical MSE

CRB

Fig. 2. Theoretical and empirical MSE of θ̂1,N
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