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ABSTRACT 

This paper presents a new analytical model for the mean 

weight behaviour of the Affine Projection adaptive algo-

rithm for autoregressive inputs and unity step-size. Determi-

nistic recursive equations are derived which consider an 

initial transient phase not accounted for in previous analy-

ses. This phase occurs at the very beginning of the adapta-

tion process, and is due to the arbitrary initialization of the 

coefficients. It is a deterministic process that prevents the 

correct orthogonalization of the coefficient vector in relation 

to the subspace defined by the past input vectors. Monte 

Carlo simulations show improvements in the accuracy of the 

presented model when compared with a previously devel-

oped one. 

1. INTRODUCTION 

Adaptive filters are widely used in many important real-

time applications such as echo cancellation, active noise 

control and hearing-aids. Although popular for its low 

computational cost, the LMS family suffers from slow con-

vergence for highly correlated input signals. The Affine 

Projection (AP) algorithm proposed by Ozeki and Umeda 

in 1984 [1] applies weight vector updates that are orthogo-

nal to the last P input vectors. This strategy tends to reduce 

the input signal correlation in time, speeding up conver-

gence [2] and making the algorithm attractive for applica-

tions with highly correlated input signals. The improved 

transient performance comes at the cost of a larger compu-

tational complexity and a higher noise floor, as compared to 

the normalized LMS algorithm (NLMS). As the impact of 

the extra computational cost consistently decreases with 

advances in the semiconductor industry, the AP algorithm 

and its fast versions [3]-[4] become more employed in practi-

cal systems. 

Although much has already been studied about the AP 

behaviour, its complete understanding still represents a chal-

lenge. This is because the embedded underdetermined least 

squares estimation process significantly complicates any 

statistical analysis. 

A statistical analysis of the AP algorithm was presented 

in [5] for autoregressive (AR) inputs and unity step size 

(fastest convergence). Deterministic recursive equations were 

derived for modelling the mean and mean-square behaviour 

of the AP for a large number of adaptive taps. The examples 

in [5] showed good predictions of the AP behaviour as com-

pared to Monte Carlo simulations for all analysed cases. 

However, subsequent extensive use of the theory developed 

in [5] has revealed model inaccuracies at the initial algorithm 

iterations for certain parameter settings. A typical example is 

the processing of high order AR input signals combined with 

a weight vector initialization very far from the optimum. 

These initial errors were then propagated in time due to the 

recursive nature of the adaptive learning process.  

This work presents an extension to the analytical model 

in [5] for the mean weight behaviour of the AP algorithm. 

Improved model accuracy is obtained through the addition of 
a new term to the equations in [5]. This new term estimates 

the effect of the transient error caused by an arbitrary initiali-

zation of the weight vector on the orthogonal projection of 

the weight update onto the subspace defined by the previous 

P input vectors. The extended model accurately predicts the 

algorithm mean behaviour even in the situation found prob-
lematic for the model in [5]. The contributions of this work 

can be used to improve not only existing theoretical models, 
but also robustness and stability analyses such as those in [6]. 

The paper is organized as follows. Section 2 introduces 

the input signal model and the notation used. Section 3 re-

views the AP algorithm. Section 4 briefly presents the theo-

retical model derived in [5]. Section 5 derives the new ana-

lytical model. Section 6 presents Monte Carlo simulations to 

validate the developed model. Finally, Section 7 presents the 

main conclusions of this work. In this paper scalars are de-

noted by plain lowercase or uppercase letters, vectors are 

denoted by lowercase boldface letters and matrices by up-

percase boldface letters. The letter n denotes discrete time. 

2. THE INPUT SIGNAL MODEL 

In this work the input signal u(n) is assumed to be a zero-

mean wide-sense stationary AR process of order P. It can be 

described by 

 
1

( ) ( ) ( )
P

i

i

u n a u n i z n
=

= − +∑  (1) 

where ai are the AR coefficients and z(n) is a wide-sense sta-

tionary white noise process with variance σz
2
. AR processes 
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are mathematically tractable and can be used to model input 

signals for many practical applications. A set of N consecu-

tive samples of (1) can be described by the following matrix 

notation 

 ( ) ( ) ( )n n n= +u U a z  (2) 

where u(n) = [u(n) u(n-1) … u(n-N+1)]
T
 is the input regres-

sor with autocorrelation matrix Ru = E{u(n)u
T
(n)}, a = [a1 a2 

… aP]
T
, z(n) = [z(n) z(n-1) … z(n-N+1)]

T
 and U(n) = [u(n-1) 

u(n-2) … u(n-P)]
T
. The adaptive system attempts to estimate 

a desired signal d(n) that is modelled by 

 ( ) ( ) ( )T
d n n r n= +ow u  (3) 

where the N-length vector w
o
 = [w

o
0 w

o
1 w

o
2 … w

o
N-1]

T
 models 

the impulse response of the unknown system (plant) and r(n) 

is an independent, identically distributed, zero-mean noise 

with variance σr
2
. 

3. THE AP ADAPTIVE ALGORITHM 

The AP algorithm can be formulated as the solution of an 

underdetermined least squares problem subject to multiple 

constraints [2]. The optimization problem can be stated as the 

minimization of the Euclidian norm of ∆w(n) = w(n+1)–

w(n) (minimum disturbance principle), where w(n) = [w0(n) 

w1(n-1) … wN-1(n)]
T
 is the adaptive weight vector, subjected 

to the set of constraints given by 

 

( ) ( 1) ( )

( 1) ( 1) ( 1)

( ) ( 1) ( ).

T

T

T

n n d n

n n d n

n P n d n P

+ =

− + = −

− + = −

u w

u w

u w

⋮
 (4)

 

The solution of this optimization problem using the method 

of Lagrange multipliers leads to the AP weight update equa-

tion [1] 

 ( ) ( )
1

1 ( ) ( ) ( ) ( )
T

n n n n n nµ
−

 + = +  u u u ew w U U U e  (5) 

where Uu(n) = [u(n) U(n)], and ee(n) = [ee(n) ee(n-1) ... ee(n-

P)]
T
 is the error vector with entries ee(n-k) = d(n-k)-u

T
(n-

k)w(n) and ee(n-k) = e(n-k), the instantaneous error signal. 

The step-size µ is equal to one in the solution of the optimi-

zation problem and is introduced in (5) only to permit some 

control over the algorithm convergence. 

For u(n) an AR process as in (1) and for µ =1 (maximum 

convergence speed), it was shown in [2] that the weight vec-

tor updates occur in the direction of a vector φφφφ(n) given by 

 ( ) ( ) ( ) ( )ˆn n n n= −u U aφφφφ  (6) 

where â(n) is the least squares (LS) estimate of the AR coef-

ficient vector a, and is given by 

 ( ) ( ) ( ) ( ) ( )
1

ˆ .
T T

n n n n n
−

 =  a U U U u  (7) 

As a result the weight update equation can be written as 

 ( ) ( )
( )

( ) ( )
( )1

T

n
n n e n

n n
+ = +w w

φφφφ

φ φφ φφ φφ φ
 (8) 

Defining the weight error vector v(n) = w(n)-w
o
, the scalar 

error signal e(n) is given by 

 ( ) ( ) ( ) ( )T
e n r n n n= − v u

.
 (9) 

The AP algorithm order is the number P+1 of input vectors 

used to represent φφφφ(n). 

4. PREVIOUS ANALYSISIS 

The works in [2] and [5] provided important insights into the 

AP behaviour. Some of these results are briefly revisited 

here, as they constitute the basis of this work. 

4.1 Weight Behaviour 

Equation (12) of [2] introduced the following set of determi-

nistic relations for the AP: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1

T T T

T

T T

n n n n n n r n

n n r n

n n n n

+ = − +

+ =

+ =

v v u v

u v

U v U v

φ φφ φφ φφ φ

 (10) 

Equations (10) result in  

 ( ) ( ) ( )1 1
T

n n n+ = −U v r  (11) 

where r(n-1) = [r(n-1) r(n-2) … r(n-P)]
T
. Using then equa-

tions (6), (9), and (10) in (8) resulted in 

 ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )
1

T

a

T T

n n n n r n
n n

n n n n
+ = − +

v
v v

φ φ φφ φ φφ φ φφ φ φ

φ φ φ φφ φ φ φφ φ φ φφ φ φ φ
 (12) 

where 
1

( ) ( ) ( ) ( )
P

a ii
r n r n â n r n i

=
−= −∑

 
is the filtered noise 

sequence [2]. 

4.2 Mean Weight Behaviour 

Equation (12) was the starting point of the mean weight 

analysis provided in [5] where the following statistical as-

sumptions were used: 

• A1: The number of adaptive filter weights is large 

enough so that N >> P. 

• A2: The statistical dependence between z(n) and 

U(n) can be neglected for N >> P. 

• A3: Vectors φφφφ(n) and w(n) are statistically independ-

ent and φφφφ(n) is orthogonal to the columns of U(n). 

• A4: φφφφ(n) is a zero-mean Gaussian random vector. 

Using A3 and noting that E{φφφφ(n)ra(n)} = 0 due to the 

zero mean of r(n), the expected value of (12) was found in 

[5] to be given by 

 ( ){ } ( ){ }
( )

( ) ( )
( ){ }

( )
1

T

T

n n
E n E n E E n

n n

  
+ = −  

  
v v v

φ φφ φφ φφ φ

φ φφ φφ φφ φ
 (13) 

Moreover, using the following results from [5] 

 ( ) ( ){ } ( )

1

2
2

T

z

N
E n n

G G σ

−

  =  −
φ φφ φφ φφ φ  (14) 

 ( ) ( ){ } ( ) 2 .T

z
E n n G N σ= Iφ φφ φφ φφ φ  (15) 

where G = N–P, (13) leads to 

 ( ){ } ( ){ }
1

1 1 .
2

E n E n
G

 
+ = − 

− 
v v  (16) 

Equation (16) was the deterministic recursion derived in [5] 

for predicting the mean weight error behaviour. 
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5. NEW WEIGHT BEHAVIOUR ANALYSIS 

This section presents a new analytical model for the mean 

weight behaviour of the AP adaptive algorithm in order to 

improve the results presented by [2] and [5]. 

5.1 Initialization error 

In [5], equations (10) and (11) presented here were as-

sumed to hold for all stages of the adaptation process, result-

ing in accurate predictions for the AP mean and mean square 

behaviour in all cases studied. However, equation (11) is not 

always valid. There is a transient phase during the initial al-

gorithm iterations that is a function of the distance between 

the initial weight vector and the optimum solution. This can 

be easily verified by noting that U
T
(n)v(n+1)|n = -1 = U

T
(-

1)[w(0)-w
o
] (before the first weight update) is not necessarily 

equal to r(n-2), where w(0) is the initial weight vector. Thus, 

an initialization not satisfying equation (11) will result in an 

error in the expected orthogonalization of the weight vector 

with respect to the subspace defined by the past input vec-

tors. As the adaptation process evolves, the r.h.s. of equation 

(11) is successively (term by term) satisfied. However, the 

influence of an initial error will still persist during all the 

transient phase due to the infinite memory of equation (8). 

To avoid the transient error, the initialization vector w(0) 

should satisfy the following equation 

 

( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

0 0

1 1

1 1

1 1(0)

2 1 2(0)

1 (0)

o

o

o

N N

u n u n N r nw w

u n u n N r nw w

u n P u n N P r n Pw w
− −

− − −    −
    

− − − −−     =
    
    

− − − + −−        

…

…

… … … ……

…

(17) 

Since the optimum solution is not known, an arbitrary 

w(0) will not satisfy (17) in general. Hence, the transient 

algorithm behaviour may be significantly different from that 

predicted by the models revisited in Section 4. The model 

accuracy will depend on the magnitude of the error in esti-

mating the delayed noise vector r(n-1) and on the memory of 

the adaptive filter. We have verified that this modelling inac-

curacy has more significant impact when three conditions are 

simultaneously presented: high AP order, large number of 

coefficients and initialization far from the optimum solution. 

5.2 Proposed solution 

The proposed solution to the initialization problem con-

sists in adding a correction factor to equation (11) that incor-

porates the effect of the incorrect coefficient vector orthogo-

nalization at the beginning of the adaptation process. Equa-

tion (11) is modified to 

 ( ) ( ) ( ) ( )1 1
T

n n n n+ = − +U v r q  (18) 

where q(n) = [q1(n) q2(n) … qP(n)]
T
. The entries of q(n) 

should disappear sequentially at each algorithm iteration. 

One possible way to obtain this effect is to define 

 ( ) ( ) ( ){ } ( )1(0)T

iq n n i r n i u i n−= − − − −u v  (19) 

where u-1(k) is the step function (1 if k ≥ 0 and 0 for others 

values of k). As a result, q(n) can be represented in a vector 

form as 

 ( ) ( ) ( ) ( ) ( )1 0 1T
n n n n = − + − − q Q U v r  (20) 

where the P×P matrix Q(-n+1) is 

 

( )

( )

( )

( )

1

1

1

1

1 0 0

0 2 0
.

0 0

n

u n

u n

u n P

−

−

−

− + =

 − + 
 

− + 
 
 

− +  

Q

…

…

⋮ ⋮ ⋱ ⋮

…

 (21) 

 Using (18) and (20) in (8) as in [2], we obtain  

 

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( )

1

ˆ 1
   0

ˆ 1 1
   .

T

a

T T

T T

T

T

T

n n n n r n
n n

n n n n

n n n n

n n

n n n n

n n

+ = − +

− +
−

− + −
+

v
v v

a Q U
v

a Q r

φ φ φφ φ φφ φ φφ φ φ

φ φ φ φφ φ φ φφ φ φ φφ φ φ φ

φφφφ

φ φφ φφ φφ φ

φφφφ

φ φφ φφ φφ φ

 (22) 

Note the appearance of two new terms in the r.h.s. of 

equation (22) in comparison with (12). It is clear from (21) 

that all qi(n) will vanish after P iterations. Thus, both equa-

tions (12) and (22) will produce the same steady-state result. 

5.3 Mean weight behaviour 

Taking the expected value of (22) yields 

 

( ){ } ( ){ }
( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

1

     

ˆ
     1 0

ˆ
     1 1 .

T

T

a

T

T

T

T

T

T

n n
E n E n E n

n n

n r n
E

n n

n n
E n n

n n

n n
E n n

n n

  
+ = −  

  

  
+  

  

  
− − + 

  

  
+ − + − 

  

v v v

a
Q U v

a
Q r

φ φφ φφ φφ φ

φ φφ φφ φφ φ

φφφφ

φ φφ φφ φφ φ

φφφφ

φ φφ φφ φφ φ

φφφφ

φ φφ φφ φφ φ

 (23) 

Assuming that the measuring noise and the input signal 

are independent of each other, the 3
rd

 and the 5
th
 terms on the 

r.h.s. of (23) are null due to the zero mean of r(n), leading to 

 

( ){ } ( ){ }
( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )
( ) ( ) ( )

1

ˆ
1 0

T

T

T

T

T

n n
E n E n E n

n n

n n
E n n

n n

  
+ = −  

  

  
− − + 

  

v v v

a
Q U v

φ φφ φφ φφ φ

φ φφ φφ φφ φ

φφφφ

φ φφ φφ φφ φ

 (24) 

In the same way as in [5], numerator and denominator of 

each term in (24) can be assumed weakly correlated for large 

values of N. For ergodic inputs, this assumption is equivalent 

to apply the averaging principle [7]. As a result we have 

 

( ){ } ( ){ }

( ) ( ){ } ( ) ( ) ( ){ }

( ) ( ){ }
( ) ( ) ( ) ( ){ } ( )

1

1

1

   

   

ˆ           1 0 .

T T

T

T T

E n E n

E n n E n n n

E n n

E n n n n

−

−

+ =

 −  

 −  

× − +

v v

v

a Q U v

φ φ φ φφ φ φ φφ φ φ φφ φ φ φ

φ φφ φφ φφ φ

φφφφ

 (25) 

Under assumption A3 (Section 4.2), (25) becomes  
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( ){ } ( ){ }

( ) ( ){ } ( ) ( ){ } ( ){ }

( ) ( ){ } ( ) ( )

1

1

1

    

    0

T T

T

E n E n

E n n E n n E n

E n n n

−

−

+ =

 −  

 −  

v v

v

T v

φ φ φ φφ φ φ φφ φ φ φφ φ φ φ

φ φφ φφ φφ φ

 (26) 

where 

 ( ) ( ) ( ){ }Tn E n n⊥= qT u u�  (27) 

with 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

T T
n n n n n n n

−

⊥
 = −  u u U U U U u  (28) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1T T T
n n n n n n n

−

 = − +  qu U Q U U U u�  (29) 

T(n) depends only on the statistics of the input signal and 

deterministically varies with time as Q(-n+1) changes. T(n) 

can be directly estimated from the statistics of the input sig-

nal, assuming short-term stationarity. Finally, using (14) and 

(15) in (26) results, after some algebra, in 

 

( ){ } ( ){ }

( )
( ) ( )

2

1
1 1

2

0 .
2

z

E n E n
G

N
n

G G σ

 
+ = − 

− 

−
−

v v

T v

 (30) 

Equation (30) provides a new analytical model for the 

mean weight behaviour of the AP algorithm. Note that (30) 

agrees with (16) for n >P , after that the extra transient term 

vanishes. Both (16) and (30) result in unbiased estimations of 

the optimal solution in steady-state. 

5.4 Understanding T(n) 

The input vector u(n) can be expressed as 

 ( ) ( ) ( )n n n⊥=u u u�++++  (31) 

where u||(n) is the projection of u(n) into the subspace 

spanned by the columns of U(n) and u⊥(n) is the projection 

of the input vector onto the orthogonal complement of the 

subspace defined by the columns of U(n). They can be writ-

ten as: 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1

T T

n n n

n n n n n
−

=

 =  

u P u

U U U U u

� �

 (32) 

and 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1

T T

n n n

n n

n n n n n n

⊥ ⊥

−

=

 = − 

 −  

u P u

I P u

u U U U U u

�

====

 (33) 

where P||||||||(n) is the projection matrix onto the subspace 

spanned by the columns of U(n) and P⊥⊥⊥⊥(n) is the projection 

matrix onto its orthogonal complement. 

Using the interpretations given by (32) and (33), it can 

be verified that for n = 0 T(n) corresponds to the cross-

correlation matrix between the projections of the input vector 

into the subspace of the columns of U(n) and into its or-

thogonal complementary subspace. As time evolves, the ele-

ments of the main diagonal of Q(-n+1) turn to zero, resulting 

in a reduction in the dimensionality of the subspace of u||(n). 

After P iterations it turns into the null space and T(n) turns to 

a N×N null matrix. 

 
Figure 1 – Mean weight behaviour of the fifth coefficient E{v5(n)} 

(linear scale). (a) Monte Carlo simulation (black); (b) Model in [5] 

(blue); and (c) proposed model (red). 

 
Figure 2 – Mean weight behaviour of the fifth coefficient E{v5(n)} 

(logarithmic scale). (a) Monte Carlo simulation (black); (b) Model 

in [5] (blue); and (c) proposed model (red). 

6. SIMULATION 

This section compares the accuracy of the proposed model 

with that of the model in [5]. Several Monte Carlo simula-

tions were carried out in order to verify the accuracy of the 

analytical model given by equation (30). However, only one 

representative example is provided here due to space limita-

tions. 

The used parameters, chosen in order to emphasize the 

initialization effect, were σz
2
 = 1, σr

2
 = 10

-6
, P = 30, N = 50. 

The input signal was generated by an AR(31) model with 

coefficients ai = (-0.99)
i
 for i = 1, ... , P. The unknown sys-

tem w
o
 is a Hanning window of length N, w(0) = [100 100 … 

100]
T
 and the results shown were averaged over 3000 runs. 

T(n) has been numerically estimated. 

Figures 1 and 2 show the mean weight behaviour of the 

fifth weight as predicted by the model in [5], by the proposed 

model and obtained from Monte Carlo simulations in linear 

(a) 
(c) 

(b) 

(a) 

(c) 

(b) 

2613



and logarithmic scales, respectively. Note that the new model 

provides a better prediction of the mean weight behaviour in 

the transient stage as compared to the model in [5]. Figure 2 

displays an improvement of approximately 8,3 dB after P 

iterations.  

Figures 3 and 4 show the evolution of the Euclidean dis-

tance between the weight error vectors predicted by each of 

the two models and the result of the Monte Carlo simulation 

2
1 model simulated[ { ( )} { ( )}]

k k

N
k E v n E v n= −Σ  in linear and loga-

rithmic scale. These results corroborate the theoretically ex-

pected improvement in the predictions of the mean weight 

behaviour. 

 
Figure 3 – Euclidean distance between the weight error vectors 

predicted by each of the two models and the result of the Monte 

Carlo simulation  (linear scale). (a) Model in [5] (blue); (b) pro-

posed model (red). 

 
Figure 4 – Euclidean distance between the weight error vectors 

predicted by each of the two models and the result of the Monte 

Carlo simulation (logarithmic scale). (a) Model in [5] (blue); (b) 

proposed model (red). 

 

 

7. CONCLUSIONS 

This paper presented a new analytical model for predict-

ing the mean weight behaviour of the AP algorithm for AR 

inputs and unity step size. This analysis focuses on modelling 

the initial transient phase of the AP algorithm convergence 

due to errors in the orthogonalization process associated with 

an arbitrary initialization of the adaptive coefficients. The 

developed model extends the model presented in [5] with the 

inclusion of a vanishing transient term. Monte Carlo simula-

tions and comparisons with the model presented in [5] have 

shown an improvement in the predictions. The contribution 

made in this work can be used to improve not only previ-

ously developed theoretical models but, as well, robustness 

and stability analyses of AP versions. 
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