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ABSTRACT

In this contribution, we present an algorithm for stop conso-
nant detection in continuous noisy speech at low signal-to-
noise ratios (SNR) in the range of -5 to 7 dB. In our approach
a signal extrapolation technique is used to predict the future
samples based on present observations and then the predicted
signal is used in the detection process. Experiments are per-
formed over 700 utterances of 60 speakers taken from the
TIMIT database with three different noise types. The detec-
tion performance achieved is 71% at -5 dB input SNR and
90.21% at 7 dB input SNR in case of white Gaussian noise
at false alarm rates of 25.14% and 10.81% respectively. The
detection performance results achieved are well in line with
previous methods though our experiments are conducted at
lower SNRs.

Index Terms— Signal detection, Extrapolation, Autore-
gressive process.

1. INTRODUCTION

One of the main problem faced by hearing impaired people
is speech recognition in noise. While vowels are relatively
easy to detect, the detection of stop consonants in noisy en-
vironments is much more difficult because of their abnormal
loudness. Stop consonants (/b/, /d/, /g/, /k/, /p/, and /t/) are
transient sounds comprising a short pause followed by a short
impulse-like burst. As shown in [1], stop consonants contain
rich information and are important for speech recognition for
normal and hearing impaired listeners. So, they deserve spe-
cial treatment during noise reduction and speech compression
compared to the accompanying vowels.

At low input SNRs, voice activity detection (VAD) based
noise reduction algorithms often consider stop consonants as
noise because of their structure and their presentation levels
much below those of vowels in speech signals. As a results
the overall intelligibility of the enhanced signal is reduced. In
[2] the effect of preservation of stop consonants on a noise
reduction system was investigated. It showed that recognition
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of stops significantly improved when the release burst of the
stop was amplified.

Ali et al. [3] conducted experiments for stop consonant
place detection and classification in the range of 5 to 60 dB
input SNRs. The detection of stop consonants in the presence
of noise at input SNR below 0 dB is a most challenging task.
In this paper we implement an algorithm for the detection of
stop consonant frames in continuous noisy speech based on
an extrapolation technique. This algorithm can be used as a
pre-processing block to a noise reduction or a speech recogni-
tion system. In our experiments, we use four speech features.
They are the prediction gain and energy difference derived
based on an extrapolated signal, a periodicity feature and the
zero-crossing rate.

The short duration of the burst makes stop consonants
vulnerable to model by an autoregressive (AR) process. Ex-
amining the AR process performance during stop consonants
gives us an important intuitive guidelines for the classification
between stationary and non-stationary components. We also
show the algorithm’s performance using the measure of cor-
rectness taking manually labeled speech as a reference. The
statistics of the detector was taken over 700 speech files mixed
with different types of noise.

The remainder of this paper is organized as follows. In
Sec. 2 we describe the extrapolation technique along with
AR model order selection criteria. The implementation of the
stop consonant detection algorithm is presented in Sec. 3. In
Sec. 4, we demonstrate the detector performance results for
three noise types. We conclude our work in Sec. 5.

2. EXTRAPOLATION TECHNIQUE

The extrapolation is a method to extend speech samples in
forward or in backward direction based on present observa-
tions. In our context extrapolation of a finite length signal
vector X = [z1, T2, X3, ..., £ y] means the calculation of new
future unknown samples X gt = [EN11, EN42, EN43, -
In this technique we assume that there exists a set of predic-
tion filter coefficients a = [a1, ag, ...a,| of order p that would
linearly predict any sample in a given signal perfectly with
zero prediction error [4], i.e.,
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If we have at least p known samples in the given signal
vector we can generate the first forward extrapolated sample
Tn+1 by the above equation resulting in a prolonged signal
vector X = [z, T2, X3, ..., TN, TN+1]. Now the last p sam-
ples are used to predict the second forward extrapolated sam-
ple z 2 using above equation again. By successively using
this procedure we can generate new samples.

There are several ways to obtain the prediction coeffi-
cients of the signal, e.g. by solving the autoregressive (AR)
model parameters. In this paper we computed AR parameters
for an extrapolation.

2.1. AR Process Theoretical Background

The discrete noisy signal model is given by,

yr =T +nr VEk 2

where yy, is observed signal, xy, is the clean speech signal,
ny, is noise signal and the suffix & represents the sample index.
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Fig. 1. Block diagram for error variance computation in be-
tween the processed noisy speech and the extrapolated noisy
speech.

As shown in Fig.1, x; and nj, are assumed to be generated
from two independent AR processes of orders P, () respec-
tively.

T+ A1 Tp—1 + A2Tk_2 + ...... +apxr_p =€, (3)
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where a;,b; are model coefficients and €,€,, are white
stationary random processes with zero mean and variances
2 2 :
o; .0, respectively.
According to equation (2), the noisy signal model y; is
rewritten as:

P Q
Yk = — Zajxkfj + € — ijnkfj +en  (5)
=1 =1

As shown in [5], the sum of two independent AR pro-
cesses results in an ARMA process, i.e.,

AR(P) + AR(Q) = ARMA(P + Q, maz(P,Q))
An ARMA(P + @, maz(P, Q) process can always be ap-
proximated by a higher order M A model and in [5], it is also
shown that an M A(Q) process can also be approximated by
an higher order AR process. In practice, the ARMA model is
more difficult to fit to data than the AR model. So, in this pa-
per we used a high order AR model to approximate the noisy
speech signal.

For computing the AR model parameters, there are sev-
eral estimation methods available, the most prominent of
which are maximum likelihood (ML) assuming Gaussian er-
rors, least squares (LS), approximate maximum likelihood
(aML), YuleWalker (YW) and the Burg method [6].

Among the above mentioned estimation methods in this
work we use Burg’s method for computing AR parameters.
The major advantages of the Burg method for estimating the
parameters of the AR model are its high frequency resolution,
it yields a stable AR model and it minimizes the both forward
and backward prediction errors while computing the AR co-
efficients. Detailed derivation of Burg’s method along with
the Levinson-Durbin recursion found in [6].

By substituting the above computed AR parameters in
equation (1), we can compute the extrapolated samples, but
the question remains which model order should be used. To
investigate which model order is suitable for modeling the in-
put signal using extrapolation, we considered AR model order
selection criteria in the following section.

2.2. AR Model Order Selection

To model the time series with an AR process, we first need
to determine the model order of the process. Automatic or-
der selection using statistical order-selection criteria was first
introduced by Akaike and then, many other modeling tech-
niques have been evaluated. Those are Final Prediction Error
(FPE), Akaike Information Criteria (AIC), Kullback Informa-
tion Criteria (KIC), Residual Variance (RV) and Minimum
Description length (MDL) [6].

Model order selection purely depends on the type of input
data given to the model. For instance, a signal which shows
rapid variations and transients will require a relatively large
model order. The mean-square value of the residual error is
one of the good parameters to measure the performance of the
AR model.

In this paper we implemented a better known criteria, AIC
on extrapolated data for selecting the model order along with
the mean square error (MSE). AIC is a measure of goodness
of fit of an estimated statistic model. AIC reflects the balance
between complexity of model order and goodness of fit and is
given by,

AIC(p) = In(0?) + = (6)
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where N is the number of data points used and o2 is the
residual variance and p is the model order. The term %p in
equation (6) gives the penalty for the selection of higher or-
ders.

The simulation results of AIC and MSE for different filter
orders at different input SNR levels are computed on the ex-
trapolated data and which are shown in Fig. 2. In Fig. 2(a),
MSE curves shows minimum at the filter orders in the range
of 60 — 80 and then its starts increasing again. In Fig. 2(b),
the curves of AIC at different input SNR levels also shows
minimum values and slow variations around the filter order
60, means where the penalty factors increasing faster for ev-
ery increase of filter order. As a conclusion, the filter orders
in the range of 60-80 are preferable for this application (ex-
trapolation).
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Fig. 2. Shows the simulation results of MSE and AIC versus
filter orders at different input SNR levels.

3. ALGORITHM

The algorithm as shown in Fig. 3 is divided into two parts.
In the first part (Step 1) the classification is done in between
stationary and non-stationary frames by using statistical prop-
erties of signal modeling. During the second part (Steps 2 and
3) stop consonants are extracted from non-stationary compo-
nents by using physiological features (pitch, ZCR) of speech
production.

The detection algorithm works frame-by-frame. In this
process at first the noisy speech signal y, is segmented
into M frames with the frame length N and frame ad-
vance R. Then, the i‘" noisy frame is represented as Y; =
[YiR+1: YiR+2, YiR+3, - Yir+n] " - In Fig. 3, I is the vector
of the size 1 x M, storing the frame index values.

After the segmentation of the noisy speech, by giving (i —
1)“” frame Y;_; as input to the extrapolation block, IV for-
ward extrapolated samples are computed by using the extrap-
olation technique as explained in Section 2. All newly com-
puted N extrapolated samples together form an extrapolated

frame which is represented as Y.¢,,. The first frame of the
noisy signal and the extrapolated signal are the same because
no previous information is available to predict the first frame.
All other frames of the extrapolated signal are calculated from
their previous frames of the noisy signal. The amount of pre-
dictability is measured by comparing the extrapolated frame
and corresponding original noisy frame in terms of prediction
gain and energy difference.
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Fig. 3. Stop consonants detection algorithm flowchart.

3.1. Step 1: Prediction Gain (PG)

The prediction gain and energy difference are the parameters
used in this work for measuring the success of the predic-
tion. The PG and the energy difference (ED) are computed as
shown in equations (7) and (9), respectively,

o2 2, .2
PG; = 101og,, ((fg) = 10log,, <%;”") 7

(& €

EO; =Y"Y; ; EE; =Y2, Yeur, (8)
ED; =|101log,,(EO;) — 10 log,,(EE;)| 9)

where E D; is the energy difference between the noisy and
the extrapolated signal of frame ¢. The PG decreases with de-
creasing input SNR because the noise is more dominant. The
residual variance o2 decreases with increasing AR model or-
der. For white noise, during low input SNR’s 02 >> o2

so 02 ~ o2 and for high input SNR’s 02 << o2 then we
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have 02 = 031. As mentioned in Section 2.2, the AR pro-

cess can model quasi stationary speech components far better
than non-stationary components and onsets. So, during quasi
stationary components (like vowels) the residual energy dif-
ference is very small for large filter orders. As we fixed the
filter order to half of the maximum, the energy difference be-
tween original frame and extrapolated frame is different for
different sounds. Figure 4 shows the scatter plot of the PG
and the ED of noisy speech frames of the male and female
speech utterances taken from TIMIT database at input SNR
7dB. The red spots represent all kinds of noisy frames, the
blue ones are the frames which belong to the stop consonants
of the female noisy speech signal, and green ones belong to
the male noisy speech signal. As Figure 4 shows, almost all
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Fig. 4. Shows the relation between the prediction gain and
the energy difference for different noisy speech frames.

stop consonant frames are concentrated in an area where the
prediction gain is less than 0 dB and the energy difference is
more than 6 dB. As a conclusion we can classify the station-
ary and non-stationary frames by setting the thresholds of PG
as 7, = 0 dB and of ED as 7. = 6 dB.

The condition to classify the frame in the first part of the
algorithm is as follows,

Non — stationary

Stationary

IfIDC-;Z < Tp, ED; > 1,
otherwise

The thresholds 7, and 7. are valid for all the input SNRs
less than or equal to 7dB because as mentioned before as SNR
decreases prediction gain also decreases and energy differ-
ence increases. For lower SNRs (< 7dB) the stop consonants
shown in Fig. 4 further moves towards top-left corner. For the
above 7dB input SNRs the thresholds changes in accordance
with the prediction gain and the energy difference.

If the frame is classified as non-stationary frame it needs
to be process further to be considered as stop consonant
frame. Otherwise the algorithm ends at this step for that par-
ticular frame by setting it’s frame index I; to zero and starts
again with the next frame.
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3.2. Step 2: Periodicity check

As stated before signal modeling is very poor in case of non-
stationary as well as during onsets of the recorded speech
signal. Every onset in the speech signal may not be a stop
consonant onset so in order to eliminate voiced onsets from
non-stationary components further classification is required.

Voiced onsets consists of more or less constant frequency
tones of some duration. Unvoiced speech is aperiodic,
random-like sounds, caused by air passing through a nar-
row constriction of the vocal tract as when stop consonants
are spoken. Voiced onsets can be identified and extracted by
checking their periodic nature.

For checking the periodicity of the noisy frame, the time
domain based autocorrelation pitch estimation method is im-
plemented [7]. All voiced onset frames are eliminated from
further processing in this step by setting their frame index I;
to zero. As stop consonants are unvoiced speech components,
during periodicity check they would not exhibit any periodic
behavior. After this step the only remaining classification is
in between the noise and the stop consonant frames.

3.3. Step 3: Zero crossing rate (ZCR)

ZCR is one of the important and useful features for speech
classification. The typical stop consonant waveform is shown
in Fig. 5, where we can see the sudden burst followed by a
slow decay. The useful way to detect stop consonants is to
look for their transient region in the signal.
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Fig. 5. Depicts the typical structure of the stop consonant
waveform.

In this step, based on the structure of the stop consonants,
the feature ZCR is used for final classification in between
noise and speech stop consonant frames. The ZCR of the i*"
frame Y is calculated according to equation (10).

N
Z Isgn(Yir+n) — Sg0(YiR+n—1)]

n=2

(10

We analyzed the ZCR behavior of the stop consonant
frames (SCF) along with the noise frames (NF). Found that
the ZCR of the SCFs are different than NFs. In case of white
noise NFs higher ZCR than SCFs because of their frequent
signal sign change and also because of the slow decay re-
gion in Stop consonant. In case of babble noise the ZCR of
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SCFs shows higher than compared to NFs. As explained, the
thresholds of the final decision (ZCR based decision) depends
on the type of input noise.

4. RESULTS AND DISCUSSION

The system was tested using 700 utterances for 60 speakers
from different dialects of the TIMIT database mixed with ad-
ditive white Gaussian noise, babble noise, and cafeteria noise
at sampling frequency 16kHz. All noisy speech untterences
are segmented with the frame length 512 and frame advance
64. Combining the extrapolation, periodicity and ZCR fea-
tures to perform stop consonant detection for three different
noise types yields the results shown in Fig. 6.

Fig. 6(a) shows true detection rate performance curves
for three noise types and the Fig. 6(b) shows false alarm rate
curves. True detection is counted when the noisy frame is
detected as stop consonant frame and is also marked as stop
consonant frame according to the TIMIT labeling. The true
detection rate (TDR) is computed as the ratio of true detec-
tions to the number of stop consonants occurrence. The false
alarm rate (FAR) is computed as the ratio of the false detec-
tions to the total number of false phoneme occurrences.

95 0 26E
—&— White noise b \
—E— Babble noise /‘ 024
90| —— Cafeteria noise \k
02
g

S

o 85

g A/ £ 02

8 E \ ¥\\e\

5 80 <018 N o

£ g \ N

< =016

E 75 = V\‘K\]
014} —s— White noise

7 —6— Babble Noise
012
x/ —#— Cafeteria noise

[
s 0 5 5 0 5
Input SNR (dB) Input SNR (dB)

o
Ch
(=1

Fig. 6. The performance of the stop consonants detection in
terms of TDR and FAR in case of three different noise types.

As shown in Fig. 6, at -5 dB input SNR the TDR and FAR
achieved are 71% and 25.14% respectively and at 7 dB input
SNR the TDR and FAR achieved are 90.21% and 10.81% re-
spectively in case of white Gaussian noise. The thresholds
of the speech features used in the detection algorithm can be
modified according to the FAR and TDR requirements in ap-
plications.

5. CONCLUSIONS

In this paper we present an algorithm for stop consonant de-
tection in continuous noisy speech at lower SNR’s. The ex-
trapolation technique was investigated along with AR process

model order selection criteria. To achieve the aim, the chosen
speech features are effectively used in the detection process
of the stop consonants. The performance of the detector al-
gorithm is demonstrated at lower SNRs in the range of -5dB
to 7dB for different types of noises with a detection rate in
the range of about 70% to 90% and with a false alarm rate
in the range of 25% to 10%. By using adaptive thresholds
instead of fixed thresholds for detection, we may reduce the
false alarm rate further and increases the detection perfor-
mance. The fixed thresholds could be adapted to the input
SNR which needs to be estimated for this purpose. This will
be investigated in future works.
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