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ABSTRACT

We address the problem of transmit beamforming to multiple

cochannel multicast groups where the total transmitted power

is minimized subject to quality-of-service (QoS) constraints

at the receivers. The iterative second-order cone program-

ming (SOCP) approach recently proposed in [2] is a powerful

tool to solve this problem and has certain advantages over

other state-of-the-art techniques like the semidefinite relax-

ation (SDR) approach. However, we show in this paper that

its computational complexity is unnecessarily high. There-

fore, we propose to eliminate the superfluous part of its com-

putational effort by combining the concept of the iterative

SOCP method with that of interior-point methods. Computer

simulations show that by this means, we can substantially

reduce the computational complexity of the iterative SOCP

method while preserving its good performance.

Index Terms— Multicasting, downlink beamforming,

convex optimization, second-order cone programming, interior-

point methods

1. INTRODUCTION

Multicasting, e.g., for streaming media, has traditionally been

considered as a task performed at the network layer by rout-

ing protocols. In emerging wireless networks, however, this

task can be performed at the physical layer by exploiting the

broadcasting property of the wireless medium. Many wireless

communication standards, such as, e.g., Multimedia Broad-

cast Multicast Service (MBMS) in LTE-A, provision the use

of multiple antennas and channel state information (CSI) at

the transmitter enabling multicast transmit beamforming. In

transmit beamforming, differently weighted replicas of the

signals are transmitted over multiple antennas. The aim is to

radiate the power in a spatially selective way, so that the main

portion of the power is radiated into the desired directions.

Exploiting this spatial selectivity, one can increase the spec-

tral efficiency of the system by multiplexing different cochan-

nel multicast groups in space rather than in time or frequency.

The problem of downlink beamforming in a multi-group

multicasting (MGM) scenario, where G independent data

streams are transmitted towardsG cochannel multicast groups
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of multiple mobile users, was first considered in [1]. The aim

of the proposed method in the latter reference is to obtain the

complex beamforming weight vectors which minimize the to-

tal transmitted power subject to receiver QoS constraints. The

problem obtained by this QoS-based design is a non-convex

NP-hard optimization problem.

Using SDR, the original non-convex problem is approxi-

mated in [1] by a semidefinite programming (SDP) problem

which can be solved in polynomial time. However, due to the

relaxation involved, the solution to the SDP problem may be

infeasible for the original problem. Therefore, the SDR ap-

proach needs to be accompanied by randomization (see, e.g.,

[1] and references therein) and proper power scaling. With

help of the latter two methods, a feasible approximate solu-

tion can often be generated from the solution to the SDP prob-

lem. In the MGM scenario, proper power scaling can only be

achieved by solving an additional linear programming (LP)

problem for each randomization instance.

In [2] and [4], an alternative convex approximation ap-

proach has been proposed for the MGM scenario. Rather than

applying the SDR, the original problem is approximated by a

SOCP problem whose feasible set is a subset of the original

feasible set. Hence, the solution to the SOCP problem, pro-

vided it exists, is always feasible for the original problem and

the use of randomization and costly power control is avoided.

Since the approximated feasible set is only a subset of the

original feasible set, an iterative method has been proposed in

[2] and [4] where the approximated feasible set is updated in

every iteration in order to successively improve the approxi-

mate solution.

In each iteration of the algorithm in [2], the solution to a

SOCP problem is obtained with high accuracy using interior-

point methods [3]. However, since this solution is updated

in the next iteration anyway, a high accuracy of these inter-

mediate solutions is not required. In this paper, we therefore

propose to obtain intermediate solutions which are only sub-

optimal to the SOCP problems to reduce the computational

complexity of the method in [2]. These suboptimal interme-

diate solutions can be obtained by performing only one it-

eration of the interior-point method used to solve the SOCP

problem. In other words, we solve only an approximation

of the SOCP problem rather than the SOCP problem itself

which requires less computational effort. When the updates
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of the feasible set become negligibly small, we successively

increase the approximation accuracy similar to the traditional

interior-point methods to compute the final optimal weight

vector with sufficiently high accuracy. We demonstrate our

idea using the barrier method as a simple and illustrative ex-

ample of an interior-point method. However, our idea can be

applied to other interior-point methods as well, e.g., to more

efficient primal-dual interior-point methods [3]. Our simula-

tion results show that the proposed method achieves the same

performance as the method in [2] at a substantially reduced

computational complexity. Hence, there is no price we have

to pay for this complexity reduction.

Remark: In this paper, we restricted our study to MGM

transmit beamforming for brevity. However, all the presented

concepts can straightforwardly be applied to distributed

beamforming in MGM relay networks of [4] as well.

Notation: We denote transpose and Hermitian by (·)T and

(·)H , respectively. The operators E{·}, tr{·} and ‖·‖2 denote
the statistical expectation, trace and Euclidean norm, respec-

tively. diag(a) denotes a diagonal matrix which contains the

elements of a vector a on its diagonal. ⊗ stands for the Kro-

necker product. IG denotes the G × G identity matrix and

ek denotes the kth column of IG. Re{·} and ∠{·} denote the
real part and the angle of their argument, respectively.

2. SIGNAL MODEL AND PROBLEM STATEMENT

We consider the wireless MGM scenario of [1]. In this sce-

nario, a multi-antenna transmitter with N antenna elements

communicates with G multicast groups of multiple destina-

tion users, {G1, . . . ,GG}, where Gk is the set of indexes of

users participating in multicast group k, 1 ≤ G ≤ M and

M denotes the total number of single-antenna receivers. hm

represents the N × 1 vector of complex flat fading chan-

nel gains between each transmit antenna and the receive an-

tenna of the mth user where m ∈ {1, . . . ,M}. Each re-

ceiver belongs to a single group only, i.e., Gk ∩ Gl = ∅,
for k 6= l and ∪kGk = {1, . . . ,M}. Let w∗

k denote the

N × 1 complex beamforming weight vector applied to the

transmitting antenna array for the kth group. In the follow-

ing, we assume that the transmitted information symbols are

zero-mean with unit variance and mutually uncorrelated [1].

Then, the total power transmitted by the antenna array is given

by
∑G

k=1 ||wk||22. The multicast beamforming problem is to

minimize the total power of the signal radiated at the trans-

mitter subject to the destination QoS constraints. To measure

QoS at each destination, the signal-to-interference-plus-noise

ratio (SINR) is used. Thus, the QoS constraints guarantee that

the SINR at each user is kept above a predefined threshold.

Assuming that the CSI in terms of the instantaneous channel

vectors {hm}Mm=1 and the receiver noise powers {σ2
m}Mm=1

are known at the transmitter, the optimization problem can be

written as

min
{wk}G

k=1

G
∑

k=1

‖wk‖22 (1)

s. t.
|wH

k hm|2
∑

l 6=k |wH
l hm|2 + σ2

m

≥ γm,

∀m ∈ Gk, ∀k, l ∈ K
where K = {1, . . . , G}. The problem in (1) is a non-convex

optimization problem and it is generally difficult to solve.

To obtain a simpler optimization problem, the original non-

convex problem can be approximated by a convex SDP prob-

lem as in [1] or by a convex SOCP problem as in [2]. In the

following, we focus on the SOCP approach which exhibits

certain advantages over the SDP approach.

By introducing the new matrix and vector

Hk,m ,

[

σ2
m 0

T

0 (IG − diag{ek})⊗ hmh
H
m

]1/2

, (2)

∀m ∈ Gk, ∀k ∈ K, w , [1,wT
1 , . . . ,w

T
G]

T

themth constraint in problem (1) can be written as

|wH
k hm| ≥ √

γm‖Hk,mw‖2. (3)

Using the following approximation

|wH
k hm| ≥ Re{wH

k hm}, (4)

i.e., substituting the magnitude of wH
k hm by its real part, the

non-convex problem (1) is turned into the following convex

one

min
w

‖w‖2 (5)

s. t. Re{wH
k hm} ≥ √

γm‖Hk,mw‖2,
∀m ∈ Gk, ∀k ∈ K, w1 = 1.

Problem (5) is a SOCP problem and can be solved effi-

ciently using interior-point methods [3]. However, due to the

strengthening of the constraints according to (4), the solution

to (5) is generally only suboptimal for (1) and may be very

inaccurate. Therefore, an iterative method has been proposed

in [2] to successively improve the approximate solution. The

idea is to adapt the approximation of the feasible set in the

(i + 1)th iteration to the solution w
(i)
k,opt of (5) in the ith it-

eration. This is accomplished by rotating the phase of h(i+1)
m

such that the approximation in (4) is tight forw
(i)
k,opt which is

the case if w
(i)H
k,opth

(i+1)
m is real and non-negative.

Hence, we define the channel rotation recursion as [2]

h
(i+1)
m , h

(i)
m exp

(

−jα(i)
k,m

)

(6)

where α
(i)
k,m denotes the rotation angle in the ith iteration and

is chosen as α
(i)
k,m = ∠

(

w
(i)H
k,opth

(i)
m

)

.

As shown in [2], this makes it possible to find an improved

solutionw
(i+1)
k,opt in the next iteration thanw

(i)
k,opt of the current

iteration. Note that rotating the phase of hm according to (6)

does not affect the original problem (1). It has been shown in

[2] that the objective value decreases monotonously with the

iterations as long as α
(i)
k,m 6= 0 for all active constraints (i.e.,
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constraints satisfied with equality) in at least one multicast

group in the current iteration.

3. PROPOSED METHOD

In the iterative method proposed in [2], a sequence of op-

timization problems (5) have to be solved and as a conse-

quence, the complexity of this method is unnecessarily high.

In each iteration, the SOCP problem (5) is solved using an

interior-point method which is an iterative method itself. To

make them distinguishable, let us refer to the iterations of suc-

cessive channel rotations indexed by (i) in (6) as outer itera-

tions and to those of the interior-point method as inner iter-

ations. In a particular outer iteration, performing inner itera-

tions to convergence yields the optimal solution to the SOCP

problem (5). However, as the feasible set is then updated in

the outer iterations, it is not necessary to process the inner it-

erations up to convergence. Therefore, the idea presented in

this paper is to avoid this unnecessarily high accuracy of in-

termediate solutions and obtain solutions which are only sub-

optimal to problem (5). This can be achieved by performing

only a single inner iteration per outer iteration which corre-

sponds to solving an approximation of the SOCP problem (5)

rather than problem (5) itself. This reduces the computational

complexity of the iterative method in [2].

We explain our idea considering the example of the bar-

rier method [3] as a particular interior-point method which is

most straight-forward. We note, however, that our idea can be

applied to other interior-point methods as well. Let us first

briefly review the concept of the barrier method. A com-

mon tool to solve convex problems, such as, e.g., equality-

constrained convex problems, is Newton’s method [3]. How-

ever, convex problems with inequality constraints cannot di-

rectly be solved using this method. Therefore, in the bar-

rier method, the solution to an inequality-constrained con-

vex problem is obtained by solving a sequence of equality-

constrained convex problems each of which is solved using

Newton’s method. Towards this aim, the original inequal-

ity constrained convex problem, in our case problem (5), is

approximated by a convex problem without inequality con-

straints as shown next. Following the derivation of the bar-

rier method in [3], we incorporate the inequality constraints

of problem (5) into the objective function using the indicator

function I−(u) as follows

min
w

‖w‖2 +
M
∑

m=1

I−
( √

γm‖Hk,mw‖2 − Re{wH
k hm}

)

s. t. w1 = 1. (7)

where the indicator function for non-positive reals I−(u)
is defined as

I−(u) =

{

0 u ≤ 0
∞ u > 0

The problem in (7) is equivalent to problem (5), i.e., prob-

lem (5) is turned into an equivalent equality-constrained

problem. However, the objective function of problem (7) is

non-differentiable. Accordingly, Newton’s method, which

requires twice differentiable functions, cannot be applied di-

rectly. To overcome this problem, we use the idea of the

barrier method to approximate the indicator function with

a differentiable one. Here, we use the logarithmic barrier

function as an approximation [3]. Using the generalized log-

arithm for the second-order cone [3], the approximation of

the indicator function in problem (7), can be defined as [3]

Î−(w) = −
(

1

t

)

log
(

(

Re{wH
k hm}

)2 − γm‖Hk,mw‖22
)

which is twice differentiable and where the parameter t con-

trols the accuracy of the approximation. That is, the larger

the value of t, the closer the logarithmic approximation is to

the original indicator function I−. Substituting the original

with the approximated indicator function in problem (7), one

obtains the following approximation[3]

min
w

t‖w‖22 + φ (w) s.t. w1 = 1 (8)

where the function φ denotes the logarithmic barrier for

the SOCP problem (5) and is defined as

φ (w) = −
M
∑

m=1

log
(

(

Re{wH
k hm}

)2 − γm‖Hk,mw‖22
)

.

(9)

Problem (8) is an approximation of the original SOCP prob-

lem (5). The function in (9) is convex (which is not obvi-

ous but has been shown in [3] for SOCPs in general) and

thus, problem (8) is convex. The domain of problem (8) is

equal to the feasible set of problem (5). To achieve an accu-

rate approximate solution, the parameter t has to be chosen

large. However, problem (8) is difficult to solve via Newton’s

method for a large value of t except when the starting point

is chosen close to the optimum of (8) (see [3]). Therefore, an

iterative approach is used in the barrier method where in each

iteration, problem (8) is solved for a particular value of t. In

the first iteration, t is chosen small and it is then increased

in every iteration where the solution obtained in the current

iteration serves as the starting point in the next iteration. This

iterative scheme terminates when the solution to problem (5)

is approximated with sufficiently high accuracy.

However, as mentioned earlier, this high accuracy is not

required for intermediate solutions of the iterative method of

[2]. Therefore, we propose to use only the first iteration of

the barrier method to obtain an approximate solution to prob-

lem (5). This corresponds to combining the barrier method

with the iterative scheme of [2] as follows. In each iteration

of the proposed method, rather than solving problem (5), we

solve problem (8) for a small t which can be done more ef-

ficiently using Newton’s method. Instead of increasing t in

each iteration as in the interior-point method, we perform the

rotation of (6) and keep t fixed as long as the rotation is sig-

nificant. As soon as the rotations become negligible (i.e., as

soon as maxm{|α(i)
k,m|} < ǫ for some small ǫ), the feasi-

ble set only changes marginally and we can start increasing

t in every iteration like in traditional interior-point methods.
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This guarantees that, once a good approximation of the fea-

sible set has been found, we obtain the final weight vector

with sufficiently high accuracy. As in the traditional barrier

method, the solution obtained in a given iteration with New-

ton’s method always serves as the starting point for Newton’s

method in the following iteration. This assures that Newton’s

method converges even for increasing t. This procedure is re-

peated for a fixed number of iterations I . As in the iterative

method proposed in [2], in this method, the initial channel

vector is assumed to be equal to the original channel vector,

i.e., h(1)
m = hm. The proposed iterative method is summa-

rized in Table 1 where µ > 1.

Initialization: h(1)
m = hm, t(1) > 0

for i = 1 . . . I
Solve problem (8) with hm = h

(i)
m and t = t(i)

Perform the rotation of (6) with α
(i)
k,m = ∠

(

w
(i)H
k,opth

(i)
m

)

ifmaxm{|α(i)
k,m|} < ǫ , then: t(i+1) = µ · t(i)

otherwise: t(i+1) = t(i)

end

Table 1: Proposed Iterative Procedure

As shown in our simulation results, the method in Table

1 achieves the same performance as the iterative method of

[2]. However, this is achieved at a significantly reduced com-

putational cost since most of the inner iterations have been

eliminated.

In this work, we have focused on the logarithmic barrier

method for simplicity. However, the idea presented in this

work can also be applied to all other interior-point methods

which are based on the concept of successively increasing

an accuracy parameter t. The more sophisticated primal-dual

interior-point methods [3] belong to this class of interior-point

methods.

4. ITERATIVE FEASIBILITY SEARCH FOR THE

PROPOSED METHOD

Due to the strengthening of the constraints according to (4),

the approximated feasible set used in (5) is restricted com-

pared to the original feasible set of problem (1). Hence, for

the original channel vectors hm, problem (5) may be infea-

sible even if problem (1) is feasible. Obviously, this infea-

sibility is then inherited by problem (8) as well: If problem

(5) is infeasible, the domain of problem (8) is empty. To miti-

gate this drawback, the same concept of feasibility search that

is used in the iterative approach of [2] can be applied to our

method. The idea in [2] is to find rotated versions of the orig-

inal channel vectors for which problem (5) becomes feasible

[2]. Towards this aim, problem (5) is reformulated as a feasi-

bility problem whose solution always exists [3]

min
z, w

1
T
z (10)

s. t.
√
γm‖Hk,mw‖2 − Re{wH

k hm} ≤ zm,

∀m ∈ Gk, ∀k ∈ K, w1 = 1

zm ≥ 0, ∀m ∈ Gk, ∀k ∈ K.
where the elements of vector z = [z1, . . . , zM ]T are a

measure of how far the QoS constraint of each receiver is from

being satisfied and where 1 is the M × 1 vector whose ele-

ments are all equal to one. Note that problem (5) is feasible

if and only if 1T
z = 0. In [2], the iterative phase rotation of

hm described above has been applied to problem (10) in order

to successively decrease 1T
z to zero and thus find a feasible

initial approximation. Instead of solving (10) in every itera-

tion, we again reduce the unnecessarily high accuracy of in-

termediate solutions. We can apply the same idea used for the

approximation of problem (5) to problem (10). Therefore, we

use the indicator function to incorporate the inequality con-

straints into the objective function and then approximate the

indicator function. This leads to an approximated version of

(10) in the following form [3]

min
z, w

t1T
z + ψ (w, z) s. t. w̃1 = 1 (11)

where ψ denotes the logarithmic barrier for the SOCP prob-

lem (10) and is defined as

ψ (w, z) = −
M
∑

m=1

[

log
(

(

zm +Re{wH
k hm}

)2

− γm‖Hk,mw‖22
)

+ log ( zm)
]

.

(12)

Replacing problem (10) with problem (11) in the iterative fea-

sibility search of [2], we obtain the computationally more ef-

ficient feasibility search of Table 1 where problem (8) is re-

placed by problem (11). In the feasibility search in [2], the

infeasibility 1
T
z is reduced in every iteration. This applies

for the proposed algorithm as well. When 1
T
z = 0, a feasi-

ble initial rotation has been found and one can proceed with

the algorithm in Table 1 performed on problem (8) using this

initial rotation.

5. COMPLEXITY ANALYSIS

The SOCP problem (5) can be solved with a worst-case

complexity of O(G3N3M1.5) using interior-point methods

where the terms O(G3N3M) and O(
√
M) correspond to

the complexity per iteration and the number of iterations

required in the interior-point method, respectively [5]. The

complexity per iteration of the proposed method is the same,

i.e., O(G3N3M), whereas the number of required iterations

is slightly larger than O(
√
M) since in addition to increasing

the parameter t, the feasible sets are updated. If we assume I1
significant updates of the feasible set during which t is kept

fixed, the proposed method requires I1 + O(
√
M) iterations

with a complexity of O(G3N3M). In the method of [2],

problem (5) is solved approximately I1 times to achieve the

same performance. Hence, it requires I1 · O(
√
M) iterations

with the per-iteration complexity of the proposed method
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Fig. 1: Total transmitted power versus SINR threshold.
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Fig. 2: Percentage of feasible Monte Carlo runs versus SINR

threshold.

which results in a higher overall computational complexity.

The SDR-based approach of [1] consists of two parts that

both add to the complexity. Firstly, a single SDP problem

with a worst-case complexity of O(M2(GN +M)2.5) (see
[4] and [6]) is solved. Secondly, a LP problem with a worst-

case complexity of O(G3.5 + MG3.5) [1] is solved Nrand

times where Nrand stands for the number of generated can-

didate vectors of which, according to [1], a few hundred are

usually required. Thus, as M increases, the computational

complexities of the SOCP-based methods decrease relative to

that of the SDR-based method.

6. SIMULATION RESULTS

In our simulations, we consider a multicasting scenario in

which a transmitter with N = 6 antennas serves G = 3 mul-

ticast groups of similar size where the total number of users is

M = 16. Without loss of generality, we assume equal noise

powers and SINR thresholds at the receivers. Further, we as-

sume flat fading Rayleigh channels with unit variance. For the

SDR-based approach, 100 candidate vectors have been gener-

ated. For the original iterative SOCP method of [2], we have

chosen the number of iterations as I1 = 3 and for the pro-

posed method as I2 = 10. The parameters of the proposed

method have been set to t(1) = 0.1, µ = 8 and ǫ = 30◦. All
results (apart from the runtime results) are averaged over 300

Monte Carlo runs.

Fig. 1 displays the total transmitted power versus the min-

imal required SINR for the SDR-based method, the iterative

SOCP method of [2] and the proposed iterative method. A

lower bound, which is a byproduct provided by the SDR-

based method, is also shown and corresponds to the total

transmitted power obtained by solving the relaxation of prob-

lem (1). Note that this lower bound is not achievable in

general as the solution to the relaxed problem usually lies

outside the original feasible set. In Fig. 2, the percentage

of feasible Monte Carlo runs versus the SINR threshold is

depicted. The relaxation of problem (1) now serves as an

upper bound since it may be feasible even if the non-relaxed

problem is infeasible.

We can observe from these figures that the performance

of the proposed method is similar to the performance of the

method of [2]. However, we achieve this performance at a

significantly reduced computational complexity. The perfor-

mance of the method of [1] is similar as well but its com-

plexity is significantly higher in this multi-group multicasting

scenarios with a large number of users.

In order to complement our theoretical complexity anal-

ysis, we compare the runtimes of the different methods ob-

served during the simulations. In Table 2, the runtime of

each of the three competing methods for solving an exemplary

instance of problem (1) is provided. The proposed method

clearly outperforms the state-of-the-art methods in terms of

runtime.

Method of [1] Method of [2] Proposed method

1.691 0.447 0.217

Table 2: Comparison of runtime in seconds
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