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ABSTRACT 
 
The paper proposes a novel shock filter for image 
restoration and enhancement tasks. The method is put in 
terms of a system of partial differential equations that 
describes both the evolution of the processed image and of 
its smoothed second order derivative. The method employs 
selective smoothing terms acting on robust diffusion 
directions and its efficiency is proven in the experimental 
part of the paper on both real and synthetic images.  
 

Index Terms—partial differential equations, image 
restoration, diffusion equations. 
 

1. INTRODUCTION 
 
Partial differential equations (PDE)-based filters are 
modeling an image restoration or enhancement process 
through a partial differential equation that regards a 
degraded image I(x,y) as the initial state of a diffusion 
process and relates the image’s spatial derivatives with its 
time derivative. A classical method that devoted a lot of 
interest is the anisotropic diffusion equation which is 
essentially driven by a non-linear diffusivity function g(·) 
taking as argument the gradient vector norms of the 
evolving image U(·,t) [1]. 

Using the notation ),()0,,( yxIyxU = , the original 
formulation of the anisotropic diffusion consists in: 

U)Udiv(g(
t
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The solution of the equation at some time instant (or 
observation scale) t is approximated on the numerical 
domain by an iterative filter which computes recursively 
solutions from fine to coarser scales.  

A common formalism used in the literature to describe 
the action of a PDE-based filter in each pixel of the 
processed image is based on an orthonormal basis. Let  

UU/η ∇∇=  denote the vector collinear with the edge 

directions passing through a pixel and ηξ ⊥  a vector 
oriented along the structure directions. Equation (1) can be 
put then in the following terms: 
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with )Ug(cξ ∇= and [ ]'η )Ug(Uc ∇∇= , representing 
the diffusion coefficients along the two axes. 

Equation (2) allows a better understanding of the 
filter’s behavior. For constant diffusivity functions, (2) is 
equivalent to the classical heat equation, inducing low pass-
filtering actions in each pixel of the processed image. 
However, for one of the choices indicated in [1]: 

  12 ])/(1[)( −+= Kssg ,                       (3) 
it can be shown that the equation has always positive 
diffusion coefficients along ξ and it can have negative ( for 

KU >∇ ) or positive coefficients (for KU <∇ ) along the 
η  diffusion axis. 

The choice of the diffusion function that can lead to 
negative diffusion coefficients in the direction orthogonal to 
edges is deliberate in the original Perona-Malik model for 
allowing edge enhancement to take place. This deliberate 
inversion of a forward diffusion process that is smoothing 
out noise, is characteristic for another family of PDE based 
filters – shock filters – that was specially designed to deal 
with blur-like image degradations.  In its simple form, such 
a filter can be put in terms of the following equation: 

( ) .UUsign
t

U
∇⋅−=

∂
∂

ηη         (4) 

Equation (4) was proposed by Osher and Rudin [2] and 
it can be made stable only in the numerical domain by 
appropriate numerical schemes relying on slope limiter 
functions for limiting the solution near discontinuities. 

Both filters given by equations (3) and (4) were 
generalized since their introduction by several authors. The 
filter (3) was made more robust with respect to noise in [3]; 
the modification is related to a simple Gaussian pre-
smoothing of the input image, prior to the estimation of the 
diffusivity function: 
                   ( ) [ ])UG(gUg)Ug( σσ ∗∇=∇→∇ .         (5) 

Using (5), noise amplification is avoided and edge 
enhancement can still take place for relatively small 
standard deviations (σ) of the Gaussian filter [3].  

For shock filters major improvements were introduced 
in [4], [5] and [6].  The approach in [4] also uses a Gaussian 
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pre-smoothing, making the filter more robust with respect to 
noise; the modified shock filter equation is: 

   ξξξηησ UcUUGsign
t

U
+∇∗−=

∂
∂ )( .                    (6) 

The second term in (6) is a directional diffusion term that 
induces a smoothing action along the structure’s directions. 

The method proposed in [5] employs robust diffusion 
directions estimated via a structure tensor based approach. 
The corresponding equation: 

  UUGsign
t
U

vv ∇∗−=
∂
∂ )( σ         (7) 

induces shock filtering along the direction of the eigenvector  
v  that corresponds to the largest eigenvalue of the structure 
tensor computed at a semi-local, integration scale ρ [5]: 
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The approach in [6] was proposed directly in terms of 

a directional interpretation: 
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and it governs the image restoration process by adaptively 
inducing directional or isotropic smoothing and edge 
enhancement processes. This is accomplished by using the 
fuzzy edge detector function h(.). For low gradients the filter 
has an isotropic smoothing action ( 1)( ≅∇∗ UGh στ ) 
whereas, for high smoothed gradient norms 
( 0)( ≅∇∗ UGh στ ), the equation can be put in the following 
terms: 

UIGsignUUU
t
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inducing unidirectional smoothing along the structure 
directions and edge enhancement on the orthogonal axis. 
We refer to the original publication [6] for a description of 
the other parameters. 

All the methods presented above are scalar equations 
operating on the values of the luminance function that 
describes the image content. Gilboa et al. proposed in [7] a 
different solution for image restoration problems. The 
method combines the PDE formalism with the framework of 
complex functions of real variables for handling additive 
Gaussian noise and Gaussian blur image degradation 
scenarios. The associated PDE is: 
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with : 

IR
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a complex variable. The evolving image is defined as a 
complex function : 

       ),(),(),( yxjUyxUyxU IR +=                 (13) 

and a real scalar 
~
λ  is used by the authors to induce 

smoothing along the structure directions. The second order 
derivative along the gradient vector direction is approached 
in (11) by dividing the imaginary part of the evolving image 
with the argument θ of the complex number acting as 
parameter of the method; the authors prove that this 
approximation holds for sufficiently small values for θ. The 
use of the inverse arctangent function favors faster 
sharpening for larger second order derivatives values and  
the real part of the solution defines the restored image [7]. 
As the authors show, the method eliminates the need of 
performing Gaussian pre-smoothing as in (6), (7) or (9) and 
is more efficient in handling Gaussian blur and Gaussian 
noise degradation scenarios.  

The complex diffusion term was used also in [8] in a 
hybrid scalar/complex formulation, that insures relative 
independence with respect to the stopping time (t). 
 

2. PROPOSED METHOD 
 
2.1 Continuous model 
 
We derive our method from a theoretical analysis of the 
PDEs describing the evolution of the real and imaginary 
parts of an image processed with a complex shock filter.  
Equation (11) develops to: 
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with 
t

IRU )(  denoting, respectively, the time derivatives of 

the real and imaginary parts. 
The last term in (11) is essential for handling noise–

like degradations and, by already classical results in PDE-
based image processing, the term can be expressed as 
follows: 

Uk
U
UdivUU ∇=

∇
∇

∇= )(ξξ              (15) 

i.e. it represents a mean-curvature motion term that 
propagates isophotes in inner normal direction with a 
curvature (k) dependent speed. The properties of a PDE 
governed by such a term have been extensively studied; for 
example in [9] and the references therein, the authors show 
that, despite being efficient for denoising purposes, the 
usage of a mean-curvature denoising term leads to results in 
which each non-convex object will evolve into a convex one 
that will eventually disappear in finite time. In the case of 
complex shock filters, as shown in (14), the term affects 
both the real and the imaginary terms and it can lead to 
geometrical distortions. 

The terms involving the second order derivatives along 
the gradient directions 

ηηRU and 
ηηIU , both factored in 

(14) by a positive weight ( Rλ ), are also smoothing terms 
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acting non-selectively in each pixel of the processed image.  
For high Rλ  values the usage of such terms can lead to 
parasite blurring and displacement of edges. On another 
hand, too low values for the parameter will induce actions 
on which region-like areas will be less efficiently filtered.  The method we are proposing addresses both the 
discussed issues and it is developed to act on robust 
diffusion directions computed using the structure tensor 
approach: 
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with u representing the eigenvector corresponding to the 
smallest eigenvalue of the structure tensor (8).  

We model the image restoration process using two 
functions U(x,y,t)- the restored image at scale t – and 
V(x,y,t)- a smoothed version of the second order derivative 
of the restored image, taken along the direction orthogonal 
to structures v.  The two variables are linked through the 
system of PDEs: 
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and  
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denoting the directional derivatives taken along the 
eigenvectors of the moving orthonormal basis (u,v). For 
modulating the intensity of the selective 
smoothing/enhancement processes taking place on both 
directions, we employ Perona-Malik like functions as in 
[10-11].  

The initial condition is identical to the one used in the 
original formulation of the complex shock filter: 
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The first equation in (17) relies on a smoothed 
approximation of the second order derivative given by the 
second equation to perform restoration of the input image. 
From this point of view, our method and the complex shock 
filter are similar but, in contrast to the formulation of the 
shock filter, on the direction orthogonal to edges (v),  the 

function modeling the evolution of the input image U is 
enhanced only for sharp transitions (i.e. edges) and is 
smoothed otherwise. This also holds for the function 
modeling the evolution of the second order derivative V. 

As pointed out in [10-11] directional derivatives along 
the structure directions (u) can be regarded as confidence 
factors in the estimated orientation. High values correspond 
to corners and junctions and these values are expected to fall 
above the diffusion threshold. The use of Perona-Malik 
functions limits the mean-curvature motion effects by an 
inversion of the forward diffusion process. On oriented 
patterns and on the background of the processed image the 
directional derivatives have small values and the method 
induces smoothing for both functions. 
 
2.2. Numerical aspects 
 
We derive the approximation for the continuous equation for 
its real and imaginary parts. For the time derivative, we use 
a forward time explicit numerical scheme with a time step of 
dt=0.1, insuring that the values of U and V at the scale t+1 
are computed from the known values at scale t. 

For approximating the gradient value we use the 
classical minmod slope limiter function and 
forward/backward difference approximations [9]: 
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In order to approximate directional derivatives along 
the u and v diffusion axis we employ: 
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and similar relations for the V function.  
We handle the needed subpixel resolution through 

biquadratic interpolations as indicated in a previous work 
[11] and we compute the second order derivative involved 
in the second equation using the Hessian matrix (H) [12]: 

)( TtraceU Hvvvv =                         (23) 
 
2.3. Parameters 
 
Our method takes the following parameters: 

- ρ - the standard deviation of the structure tensor’s 
Gaussian kernel. In all the experiments we relate this 
parameter to the size of the support window (4ρ+1); 

- the Perona –Malik diffusion thresholds K. We set these 
thresholds to be time dependent, being equal to a 
predefined percentage of the integral value associated to 
the histograms of the directional derivatives taken in the 
u and v directions; 

-  a - controling the steepness of the soft sign function; 

  - ~
λ - weights the contribution of the selective smoothing  

components 
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3. EXPERIMENTAL RESULTS 
 
This section focuses on presenting a comparative analysis 
between the proposed method and the PDEs discussed in the 
introductory section.  

In a first experimental setup we consider a simple 
synthetic image composed of geometrical features that need 
to be preserved (Fig.1.a). We simulate a mixed degradation 
scenario by first convolving the image with a Gaussian 
kernel (σ=1.0) and then by adding Gaussian noise (σB=10). 

 

    
(a)    (b) 

          
(c)   (d) 

    
(e)   (f) 

Fig.1. Restoration of a synthetic image degraded by 
Gaussian blur and noise; a) original image (150x120 pixels); 
b) degraded image; c) optimal result using (9); d) optimal 
result using (11);  e) restored image using our method (U); 
f) smoothed second order derivative approximation (V). 
 

For each method we allowed the parameters to vary in 
search of an optimal result corresponding to the best mean 
structural similarity index measure (SSIM); the obtained 
mean SSIMs and the associated PSNR values are shown in 
Table 1. 
 
Table 1 – Quantitative measures corresponding to the results 

shown in Fig 1. 
Result SSIM PSNR [dB] 

Degraded image 0.427 25.50 
Kornprobst et al. (Fig. 1.c)  0.963 34.15 
Complex shock filter (Fig. 1.d) 0.958 33.90 
Proposed method (Fig. 1.e) 0.990 36.57 

The two existing filters specially designed to handle 
blur and noise – the Kornprobst et al. and the complex shock 
filter – are producing close results both in terms of SSIM 
and PSNR values (Fig.2.c, Fig.2.d). The methods both use 
mean curvature terms and the associated PDEs had to be 
stopped rather early (12 iterations for the Kornprobst et al. 
method and 20 iterations for the complex shock filter). Our 
method outperforms both considered shock filters; the gains 
of more than 2dB in PSNR and 0.03 in terms of SSIM value 
are easily observable on the results in Fig. 1. Our result was 
obtained after 40 iterations, with Perona-Malik diffusion 
thresholds set to 95% (u axis) and 35% (v axis) of the 

integral values of directional derivatives, 
~
λ =1.0 and a=0.2. 

In the second experiment we show results (Fig.2) 
obtained on a real image degraded by blur (σ=1.0) and 
Gaussian noise (σB=10). 

   
(a)                                             (b) 

   
                           (c)                                              (d) 
Fig. 2. Restoration of a real image degraded by Gaussian 
blur and noise; a) original image (256x256 pixels); b) 
degraded image (PSNR=23.39dB, SSIM=0.379; c) optimal 
result using eq. (11) (PSNR=28.08dB, SSIM=0.830); d) 
restored image using our method (PSNR=28.98dB, 
SSIM=0.883).  
 

The same effects as in the case of the synthetic image 
are observable; the observation scale for the complex shock 
filter has to be kept fine in order to limit geometrical 
distortions. This corresponds to the divergent behavior of 
the complex shock filters as it was addressed in [8].  Our 
method limits geometrical distortions and induces efficient 
smoothing of region like areas.  

The proposed method can be applied also to image 
enhancement tasks and we show in Fig. 3 comparative 
results obtained in enhancing linear, flow-like structures.  
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                        (a)                                           (b) 

  
                        (c)                                          (d) 
Fig. 3. Enhancement of a fingerprint image; a) original 
image (226x230 pixels); b) coherence enhancing filter result 
c) coherence enhancing shock filter result; d) image 
enhanced using our method.  

 
The original image (Fig. 3.a) was smoothed with the 

coherence enhancing diffusion filter [9] (Fig. 3.b), processed 
with the coherence enhancing shock filter (eq. (7)- Fig. 3.c) 
and with our method (Fig. 3.d). 

All the results were produced using a structure tensor 
with ρ=3 at an observation scale corresponding to 50 
iterations of explicit time approximation schemes. The 
coherence enhancing filter propagates information along the 
isophotes of the image and successfully enhances the 
continuity of the gray levels along these directions; the 
result, however, lacks contrast. This not the case for the 
coherence enhancing shock filter; information propagation 
takes place using a series of morphological dilations and 
erosions and the output image is almost binary. Our method 
increases the coherence along the isophotes, closes small 
gaps and adds simultaneously a shock filtering action that 
increases the contrast of the output image.  
 

4. CONCLUSIONS AND FUTURE WORK 
 
We propose a novel shock filter for image restoration and 
enhancement tasks. The method is put in terms of a system 
of partial differential equations describing the evolution of 
the processed image and of its smoothed second order 
derivative along the direction orthogonal to the structures 
composing the image. The results presented in the 
experimental section show that the method compares 
favorably with other existing approaches, the price paid 
being an increased computational complexity. 

Future work will be devoted for extending the model to 
handle the 3D and color image cases. 
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