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ABSTRACT

Due to the great interest of stereo images in several applications,

it becomes mandatory to improve the efficiency of existing coding

techniques. For this purpose, many research works have been devel-

oped. The basic idea behind most of the reported methods consists

of applying an inter-view prediction via the estimated disparity map

followed by a separable wavelet transform. In this paper, we pro-

pose to use a two-dimensional non separable decomposition based

on the concept of vector lifting scheme. Furthermore, we focus on

the optimization of all the lifting operators employed with the left and

right images. Experimental results carried out on different stereo im-

ages show the benefits which can be drawn from the proposed coding

method.

Index Terms— Stereo image coding, disparity estimation, vec-

tor lifting schemes, non separable transforms, adaptive transforms.

1. INTRODUCTION

Recent advances in acquisition and display technologies have con-

tributed to a widespread usage of stereo images. These data corre-

spond to 2 views, called left and right images, obtained by record-

ing the same scene from two slightly different positions. One of

the main advantages of these images consists of providing a three-

dimensional perception to the users. Such a 3-D representation en-

ables various functionalities like 3DTV, telepresence in videocon-

ferences [1], computer vision and remote sensing. The increasing

demand in stereo images have motivated many researchers to design

efficient compression techniques for both storage and transmission

purposes. A straightforward approach consists of separately cod-

ing each image by using existing still image coders. However, this

method is not so efficient since the images are often highly corre-

lated. Therefore, more efficient coding schemes have been designed

to take into account the inter-image redundancies [2]. The state-

of-the-art coding approach is a combination of inter-view prediction

and transform coding. More precisely, the generic stereo image cod-

ing scheme involves three steps. In the first step, one image (say

the left one) is selected as a reference image, and the other image

(the right one) is selected as a target image. After that, the dis-

parity map between the right and the left images is estimated [3].

In the second step, the target image is predicted from the reference

one along the disparity field, and the difference between the original

target image and the predicted one, called residual image, is gener-

ated. Finally, the reference image, the residual one and the disparity

map are encoded. Generally, the disparity map is losslessly encoded

using DPCM with an entropy coder whereas the residual and the

reference images are encoded in different transform domains. Pi-

oneering techniques have been developed for the Discrete Cosine

Transform [4, 5]. However, a great attention was paid to the wavelet

transform domain to achieve the quality scalability and guarantee a

lossy-to-lossless reconstruction [6, 7]. To this end, lifting schemes

have been already used to encode the reference and the residual im-

ages [7]. In a recent work [8], an adaptive lifting scheme is also

presented. The direction of prediction is selected according to the

local horizontal and vertical gradient information of the reference

image. While this approach can achieve good results in terms of bi-

trate, it is not efficient in a lossy coding context (especially at low bit

rate) since it is very sensitive to the quality of the reference image.

In [9], the disparity map and the residual image are generated by ap-

plying a bandlet transform [10] to the left and the right images. In

[11], a hybrid coding scheme is designed where DCT is employed

for the best matching blocks and the Haar wavelet transform for the

occluded ones. Recently, we have proposed a novel approach based

on the Vector Lifting Schemes (VLS) [12]. It consists of coding the

reference image in intra mode whereas the other image is coded ac-

cording to a hybrid mode driven by the estimated disparity map. Its

main feature is that it does not explicitly generate a residual image,

but two compact multiresolution representations of the left and right

images. We should note that the proposed joint multiscale decompo-

sition is handled in a separable way by cascading one dimensional

(1D) VLS along the horizontal direction, then along the vertical one.

However, it is well known that such a separable processing may not

be well-suited for images with edges which are neither horizontal

nor vertical. To overcome this drawback, some works on still image

compression have been devoted to the development of 2D non sepa-

rable lifting schemes in order to offer more flexibility in the design

of the transform [13, 14, 15].

Due to the advantages of using non separable structures as shown

in [15], we propose to perform the joint coding of the stereo image

by adopting an extension of the previous VLS structure to 2D Non

Separable schemes. The resulting decomposition will be denoted in

what follows by NS-VLS. Another objective of this work is to de-

sign adaptive decomposition, well adapted to the characteristics of

the images, through an optimization of all the filters used with the

reference and the target images. While the proposed design strategy

is inspired from our recent nonsmooth optimization technique used

for still image coding [16], it is worth pointing out that this paper

aims at extending this technique to the context of stereo image cod-

ing.

The remainder of this paper is organized as follows. In Sec. 2, we

present the principle of the considered NS-VLS decomposition. The

proposed optimization strategy is described in Sec. 3. Finally, in

Sec. 4, experimental results are given and some conclusions are
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drawn in Sec. 5.

2. 2D NS-VLS STRUCTURE

Let I(l) and I(r) denote the left and right images to be coded.

At each resolution level j and each pixel location (m,n), the ap-

proximation coefficient of the left image I
(l)
j (resp. right image

I
(r)
j ) has four polyphase components I

(l)
0,j(m,n) = I

(l)
j (2m, 2n),

I
(l)
1,j(m,n) = I

(l)
j (2m, 2n + 1), I

(l)
2,j(m,n) = I

(l)
j (2m + 1, 2n),

and I
(l)
3,j(m,n) = I

(l)
j (2m + 1, 2n + 1) (resp. I

(r)
0,j (m,n) =

I
(r)
j (2m, 2n), I

(r)
1,j (m,n) = I

(r)
j (2m, 2n + 1), I

(r)
2,j (m,n) =

I
(r)
j (2m + 1, 2n), and I

(r)
3,j (m,n) = I

(r)
j (2m + 1, 2n + 1)). The

proposed analysis NS-VLS structure is shown in Fig. 1. As men-

tioned before, the reference image I(l) is generally encoded in intra

mode. Thus, it can be seen that a non separable structure, com-

prising three prediction steps and an update step, is employed to

generate the diagonal detail coefficients I
(HH,l)
j+1 , the vertical detail

coefficients I
(LH,l)
j+1 , the horizontal detail coefficients I

(HL,l)
j+1 , and

the approximation coefficients I
(l)
j+1 of the left image:

I
(HH,l)
j+1 (m,n) = I

(l)
3,j(m,n)− ⌊(P

(HH,l)
0,j )⊤I

(HH,l)
0,j

+ (P
(HH,l)
1,j )⊤I

(HH,l)
1,j + (P

(HH,l)
2,j )⊤I

(HH,l)
2,j ⌋, (1)

I
(LH,l)
j+1 (m,n) = I

(l)
2,j(m,n)− ⌊(P

(LH,l)
0,j )⊤I

(LH,l)
0,j

+ (P
(LH,l)
1,j )⊤I

(HH,l)
j+1 ⌋, (2)

I
(HL,l)
j+1 (m,n) = I

(l)
1,j(m,n)− ⌊(P

(HL,l)
0,j )⊤I

(HL,l)
0,j

+ (P
(HL,l)
1,j )⊤I

(HH,l)
j+1 ⌋, (3)

I
(l)
j+1(m,n) = I

(l)
0,j(m,n) + ⌊(U

(HL,l)
0,j )⊤I

(HL,l)
j+1

+ (U
(LH,l)
1,j )⊤I

(LH,l)
j+1 + (U

(HH,l)
2,j )⊤I

(HH,l)
j+1 ⌋, (4)

where for every i ∈ {0, 1, 2} and o ∈ {HL,LH,HH},

• P
(o,l)
i,j = (p

(o,l)
i,j (s, t))

(s,t)∈P
(o,l)
i,j

is the prediction weighting vec-

tor whose support is denoted by P
(o,l)
i,j

• I
(o,l)
i,j = (I

(l)
i,j (m+ s, n+ t))

(s,t)∈P
(o,l)
i,j

is a reference vector used

to compute I
(o,l)
j+1 (m,n)

• I
(HH,l)
j+1 = (I

(HH,l)
j+1 (m + s, n + t))

(s,t)∈P
(LH,l)
1,j

and I
(HH,l)
j+1 =

(I
(HH,l)
j+1 (m+ s, n+ t))

(s,t)∈P
(HL,l)
1,j

are used in the second and the

third prediction steps

• U
(o,l)
i,j = (u

(o,l)
i,j (s, t))

(s,t)∈U
(o,l)
i,j

is the update weighting vector

whose support is designated by U
(o,l)
i,j

• I
(o,l)
j+1 = (I

(o,l)
j+1 (m + s, n + t))

(s,t)∈U
(o,l)
i,j

is the reference vector

containing the samples used in the update step.

It is important to note that the main difference between a vector

lifting scheme and a basic one is that for the target image I
(r)
j , the

prediction step involves samples from the same image and also some

matching samples taken from the disparity-compensated reference

image. To this end, we firstly apply Eqs (1)-(4) to generate three

intermediate detail subbands and an approximation one denoted

respectively by Ĩ
(HH,r)
j+1 , Ĩ

(LH,r)
j+1 , Ĩ

(HL,r)
j+1 and I

(r)
j+1. After that,

we add a second prediction stage composed of three steps, which

involves a hybrid prediction exploiting at the same time the intra and

inter-image redundancies in the stereo pair. This is achieved by us-

ing the estimated disparity field denoted by vj = (vx,j , vy,j). In the

following, the disparity compensated left image on a given matching

sample (m,n), given by I
(l)
j (m+vx,j(m,n), n+vy,j(m,n)), will

be simply replaced by I
(c)
j (m,n) for notation concision. Similarly

to the left image, let us denote by I
(c)
0,j (m,n), I

(c)
1,j (m,n), I

(c)
2,j (m,n)

and I
(c)
3,j (m,n) the four polyphase components of I

(c)
j (m,n).

Therefore, the final detail subbands of the right multiresolution

analysis can be expressed as:

I
(HH,r)
j+1 (m,n) = Ĩ

(HH,r)
j+1 (m,n)− ⌊(Q

(HH,r)
0,j )⊤Ĩ

(HH,r)
0,j+1

+ (Q
(HH,r)
1,j )⊤Ĩ

(HH,r)
1,j+1 + (Q

(HH,r)
2,j )⊤Ĩ

(HH,r)
2,j+1

+ (P
(HH,r,l)
0,j )⊤I

(HH,c)
0,j + (P

(HH,r,l)
1,j )⊤I

(HH,c)
1,j

+ (P
(HH,r,l)
2,j )⊤I

(HH,c)
2,j + (P

(HH,r,l)
3,j )⊤I

(HH,c)
3,j ⌋, (5)

I
(LH,r)
j+1 (m,n) = Ĩ

(LH,r)
j+1 (m,n)− ⌊(Q

(LH,r)
0,j )⊤Ĩ

(LH,r)
0,j+1

+ (Q
(LH,r)
1,j )⊤I

(HH,r)
j+1 + (P

(LH,r,l)
0,j )⊤I

(LH,c)
0,j

+ (P
(LH,r,l)
1,j )⊤I

(LH,c)
1,j + (P

(LH,r,l)
2,j )⊤I

(LH,c)
2,j

+ (P
(LH,r,l)
3,j )⊤I

(LH,c)
3,j ⌋, (6)

I
(HL,r)
j+1 (m,n) = Ĩ

(HL,r)
j+1 (m,n)− ⌊(Q

(HL,r)
0,j )⊤Ĩ

(HL,r)
0,j+1

+ (Q
(HL,r)
1,j )⊤I

(HH,r)
j+1 + (P

(HL,r,l)
0,j )⊤I

(HL,c)
0,j

+ (P
(HL,r,l)
1,j )⊤I

(HL,c)
1,j + (P

(HL,r,l)
2,j )⊤I

(HL,c)
2,j

+ (P
(HL,r,l)
3,j )⊤I

(HL,c)
3,j ⌋, (7)

where for every i ∈ {0, 1, 2, 3} and o ∈ {HL,LH,HH},

•Q
(o,r)
i,j = (q

(o,r)
i,j (s, t))

(s,t)∈Q
(o,r)
i,j

is an intra prediction weighting

vector whose support is denoted by Q
(o,r)
i,j

• P
(o,r,l)
i,j = (p

(o,r,l)
i,j (s, t))

(s,t)∈P
(o,r,l)
i,j

is an inter prediction

weighting vector whose support is denoted by P
(o,r,l)
i,j

• Ĩ
(o,r)
0,j+1 = (I

(r)
j+1(m + s, n + t))

(s,t)∈Q
(o,r)
0,j

is a reference vector

used to compute I
(o,r)
j+1 (m,n)

• Ĩ
(HH,r)
1,j+1 = (I

(HL,r)
j+1 (m+ s, n+ t))

(s,t)∈Q
(HH,r)
1,j

and Ĩ
(HH,r)
2,j+1 =

(I
(LH,r)
j+1 (m + s, n + t))

(s,t)∈Q
(HH,r)
2,j

are two reference vectors

used to compute I
(HH,r)
j+1 (m,n)

• I
(HH,r)
j+1 = (I

(HH,r)
j+1 (m+ s, n+ t))

(s,t)∈Q
(LH,r)
1,j

and I
(HH,r)
j+1 =

(I
(HH,r)
j+1 (m+ s, n+ t))

(s,t)∈Q
(HL,r)
1,j

are two intra prediction vec-

tors used to compute I
(LH,r)
j+1 (m,n) and I

(HL,r)
j+1 (m,n)

• I
(o,c)
i,j = (I

(c)
i,j (m + s, n + t))

(s,t)∈P
(o,r,l)
i,j

is a reference vector

containing the matching samples used to compute I
(o,r)
j+1 (m,n).

Finally, at the last resolution level j = J , instead of directly coding

the approximation subband I
(r)
J , we predict it from the approxima-

tion of the left image using disparity compensation. As a result, the

following residual subband e
(r)
J is generated:

e
(r)
J (m,n) = I

(r)
J (m,n)− I

(c)
J (m,n). (8)

Once the considered NS-VLS has been defined, we address in the

next section the issue of the optimal design of its lifting operators.
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P
(LH,r,l)
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I
(r)
3,j (m,n)

I
(r)
2,j (m,n)

I
(r)
1,j (m,n)

P
(LH,r)
j

P
(HL,r)
j

U
(r)
j

Ĩ
(HL,r)
j+1 (m,n)

I
(l)
3,j(m,n)

I
(l)
2,j(m,n)

I
(l)
1,j(m,n)

I
(l)
0,j(m,n)

P
(HH,l)
j

P
(LH,l)
j

P
(HL,l)
j

U
(l)
j

I
(HL,l)
j+1 (m,n)

I
(LH,l)
j+1 (m,n)

I
(l)
j+1(m,n)

I
(HH,l)
j+1 (m,n)

Ĩ
(LH,r)
j+1 (m,n)

Q
(HH,r)
j

I
(l)
j

(m,n)

I
(r)
0,j (m,n) I

(r)
j+1(m,n)

I
(r)
j

(m,n)

vj = (vx,j , vy,j)

P
(HH,r,l)
jP

(HH,r)
j

I
(HL,r)
j+1 (m,n)

I
(LH,r)
j+1 (m,n)

I
(HH,r)
j+1 (m,n)

Q
(HL,r)
j

P
(HL,r,l)
j

Ĩ
(HH,r)
j+1 (m,n)

Q
(LH,r)
j

Fig. 1. NS-VLS decomposition structure.

3. DESIGN OF A FULLY-ADAPTIVE STRUCTURE

3.1. Design of the filters used for the reference image I(l)

With the ultimate goal of producing sparse wavelet coefficients, we

propose to optimize the prediction filters P
(o,l)
j of the left image by

minimizing the ℓ1-norm of the detail coefficients:

∀ o ∈ {HL,LH,HH}, ∀ i ∈ {1, 2, 3},

Jℓ1(P
(o,l)
j ) =

Mj∑

m=1

Nj∑

n=1

∣∣∣I(l)i,j (m,n)− (P
(o,l)
j )⊤X

(o,l)
j (m,n)

∣∣∣ (9)

where I
(l)
i,j (m,n) is the sample to be predicted, X

(o,l)
j (m,n) is the

reference vector containing the samples used in the prediction step,

P
(o,l)
j is the prediction operator vector to be optimized, Mj and Nj

corresponds to the dimensions of the input subband I
(l)
j+1. To min-

imize such a criterion, the Douglas-Rachford algorithm can be em-

ployed, which is an efficient optimization tool in this context [17].

However, it can be noticed from Fig. 1 that the diagonal detail sig-

nal I
(HH,l)
j+1 is used as a reference signal in the second and the third

prediction steps to generate the detail signals I
(LH,l)
j+1 and I

(HL,l)
j+1 re-

spectively. Therefore, it is interesting to optimize the prediction filter

P
(HH,l)
j by minimizing the following weighted sum of the ℓ1-norm

of the three detail subbands I
(o,l)
j+1 :

Jwℓ1(P
(HH,l)
j ) =

∑

o∈{HL,LH,HH}

Mj∑

m=1

Nj∑

n=1

1

α
(o,l)
j+1

∣∣∣I(o,l)j+1 (m,n)
∣∣∣ (10)

where α
(o,l)
j+1 can be estimated by using a classical maximum likeli-

hood estimate. We should note that (10) is related to the approxima-

tion of the entropy of an i.i.d. Laplacian source. To solve this mini-

mization problem, we can also use the Douglas-Rachford algorithm,

reformulated in a three-fold product space [18]. For more details

about the minimization algorithm, the reader is referred to [16]. By

minimizing the weighted criterion (10), it can be noticed that the

optimization of the filter P
(HH,l)
j depends on the optimization of

the filters (P
(LH,l)
j ,P

(HL,l)
j ) and vice-versa. As a result, it appears

interesting to use a joint optimization method which iteratively op-

timizes the prediction filters P
(HH,l)
j , P

(LH,l)
j and P

(HL,l)
j . For

this purpose, we start by optimizing separately each prediction filter

P
(o,l)
j based on the ℓ1 criterion (9). Then, the update filter U

(l)
j is

optimized by minimizing the error between the approximation signal

I
(l)
j+1 and the decimated version of the output of an ideal low-pass

filter, and the resulting weighting terms 1

α
(o,l)
j+1

are evaluated. After

that, we iteratively repeat the following three steps: re-optimize

the filters P
(HH,l)
j , P

(LH,l)
j and P

(HL,l)
j by minimizing respec-
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tively Jwℓ1(P
(HH,l)
j ), J

(LH,l)
ℓ1

(P
(LH,l)
j ) and J

(HL,l)
ℓ1

(P
(HL,l)
j ),

re-optimize the update filter U
(l)
j and re-compute the weighting

terms. Note that the convergence of the proposed joint optimization

algorithm is achieved during the early iterations (after about 5 iter-

ations) where each one takes about 4 seconds for an image of size

512× 512 using a Matlab implementation [16].

3.2. Design of the filters used for the target image I(r)

Let us denote by P̃
(o,r,l)
j the sum of the two filters Q

(o,r)
j and

P
(o,r,l)
j used at the second prediction stage of the NS-VLS struc-

ture. Intuitively, one can again optimize all the prediction filters

P
(HH,r)
j , P

(LH,r)
j , P

(HL,r)
j , P̃

(HH,r,l)
j , P̃

(LH,r,l)
j and P̃

(HL,r,l)
j

by minimizing the weighted sum of the ℓ1-norm of the three details

subbands I
(o,r)
j+1 . However, since the left and right images contain

nearly similar contents, we propose to set the filters used at the first

lifting stage, applied to the right image, to those corresponding to

the reference image:

P
(HH,r)
j = P

(HH,l)
j ,P

(LH,r)
j = P

(LH,l)
j ,

P
(HL,r)
j = P

(HL,l)
j ,U

(r)
j = U

(l)
j . (11)

The advantages of this strategy is two fold. First, it simplifies the

optimization process. Furthermore, it reduces the transmission cost

of the filter coefficients. Once the optimal operators of the first stage

are determined, the other prediction filters P̃
(HH,r,l)
j , P̃

(LH,r,l)
j and

P̃
(HL,r,l)
j will be designed by an alternating optimization approach

similar to that addressed in the previous section.

4. EXPERIMENTAL RESULTS

Simulation results are performed on five real stereo pairs down-

loaded from1 . In order to show the benefits of the proposed scheme,

we provide the results for the following decompositions carried out

over three resolution levels. The first one consists of coding inde-

pendently the left and right images using the 9/7 transform which

was selected for the lossy mode of the JPEG2000 standard. This

scheme will be designated by “Independent”. The second method,

which will be denoted by “Scheme-B”, is the state-of the-art method

where the reference and the residual images are encoded using also

the 9/7 transform [7]. The third one corresponds to our previous

joint stereo coding scheme based on a separable optimized VLS

decomposition. Finally, we consider the proposed extension of this

method to a non separable structure where a joint optimization

approach is performed. The two latter methods will be designated

respectively by “SEP-VLS-OPT” and “NS-VLS-OPT”. Fig. 2 dis-

plays the scalability in quality of the reconstruction procedure by

providing the variations of the average PSNR versus the average

bitrate of the “houseof” stereo images. These plots show that the

proposed method achieves an average gain of about 0.1-0.15 dB

compared to our recent work “SEP-VLS-OPT”. The gain becomes

more important (up to 0.65 dB) compared with the state-of-the art

methods. Fig. 3 displays the reconstructed target image of the

“aerial” stereo pairs for “Scheme-B” and “NS-VLS-OPT”. We no-

tice that the coding of the residual image leads to blocking artefacts

whereas our approach reduces significantly this problem. It is im-

portant to emphasize here that the blocking artefacts appearing with

the state-of-the-art method are not related to the wavelet codec and

1http://vasc.ri.cmu.edu/idb/html/stereo/index.html,

http://vasc.ri.cmu.edu/idb/html/jisct/index.html

result mainly from the limitations of the generic scheme where a

residual image is generated using a block-based approach. Finally,

in order to measure the relative gain of the proposed method, we

used the Bjontegaard metric [19]. The results are illustrated in Ta-

ble 1 for low, middle and high bitrates corresponding respectively to

the four bitrate points {0.15, 0.2, 0.25, 0.3}, {0.5, 0.55, 0.6, 0.65}
and {1.25, 1.3, 1.35, 1.4} bpp. Table 1 gives the gain of the method

“NS-VLS-OPT” compared with “Scheme-B”. Note that a bitrate

saving with respect to the reference method corresponds to negative

values. It can be observed that the proposed approach outperforms

the classical one by about -20% and 0.2-1.4 dB in terms of bitrate

saving and quality of reconstruction.

5. CONCLUSION

In this paper, we have exploited the flexibility offered by non separa-

ble vector lifting schemes to perform a fully-optimized structure for

joint coding of stereo images. Experiments have shown the benefits

of the proposed method. In a future work, a new criterion defined

simultaneously on the reference and the target images could be en-

visaged.
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Fig. 2. PSNR (in dB) versus the bitrate (in bpp) after JPEG2000

progressive encoding of the stereo pair ’houseof’.

Table 1. The average PSNR differences and the bitrate saving at

low, medium and high bitrates. The gain of “NS-VLS-OPT” w.r.t

Scheme-B.
bitrate saving (in %) PSNR gain (in dB)

Images low middle high low middle high

houseof -1.07 -10.25 -11.31 0.04 0.46 0.87

pentagon -6.91 -21.68 -27.51 0.22 0.92 1.89

ball 1.91 -10.99 -18.29 -0.03 0.30 0.78

birch -15.17 -39.79 -23.70 0.81 1.13 2.12

aerial -0.45 -17.12 -19.44 0.02 0.75 1.43

average -4.34 -19.96 -20.05 0.21 0.71 1.41
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(a) Original target image (b) PSNR=27.10 dB, SSIM=0.728 (c) PSNR=27.81 dB, SSIM=0.744

Fig. 3. Reconstructed target image of the “aerial” stereo pair at 0.3 bpp using (b) Scheme-B (c) NS-VLS-OPT.
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