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ABSTRACT

Disparity estimation constitutes an active research area in stereo vi-

sion, and in recent years, global estimation methods aiming at min-

imizing an energy function over the whole image have gained a lot

of attention. To overcome the difficulties raised by the nonconvexity

of the minimized criterion, convex relaxations have been proposed

by several authors. In this paper, the global energy function is made

convex by quantizing the disparity map and converting it into a set

of binary fields. It is shown that the problem can then be efficiently

solved by parallel proximal splitting approaches. A primal algorithm

and a primal-dual one are proposed and compared based on numeri-

cal tests.

Index Terms— stereo vision, convex optimization, dis-

parity estimation, total variation, segmentation.

1. INTRODUCTION

There has been recently a growing interest for convex re-

laxations of challenging variational problems arising in sig-

nal/image processing and computer vision. In this paper, we

will be interested in variational formulations of disparity esti-

mation problems. Recall that a stereo vision system captures

two views of the same scene taken from slightly different an-

gles. An important task in this context is stereo correspon-

dence, the problem of finding the pixels in both images which

correspond to the projections of the same 3D point. Global

convex relaxation methods for depth estimation have been de-

veloped in recent years. They can be divided into algorithms

operating on a discrete set of values, and techniques modeling

directly the parameter space as being continuous.

The algorithms introduced in [1, 2] are continuous global

variational techniques using non-smooth convex analysis

tools. Due to the weak assumptions required by proximal

methods, the algorithm in [2] provides flexibility in defin-

ing the energy function: it can use any convex data fidelity

term with a well-defined proximity operator and any convex

constraint with a closed-form projection. A drawback of

this method is that it makes the globally optimized function

convex by performing a first-order Taylor expansion, which

in turn makes the approach dependent on an initial disparity

estimate.

Alternative solutions can be obtained by formulating the

disparity estimation problem as a combinatorial optimization

one. Relaxations based on linear programming [3] or more

sophisticated convex optimization approaches [4] have been

proposed. In [4] (see also [5]), the energy function is made

convex by converting the disparity field into a set of binary

fields and relaxing the associated binary constraints. The en-

ergy function is thus convexified without making the result

of the minimization process dependent on the initial disparity

estimate. However, as the disparity estimates are constrained

to belong to a finite set of quantization levels, an accurate

estimation of the disparity map requires a fine enough quan-

tization to be performed, so making the choice of efficient

large-scale convex optimization algorithms mandatory.

Following this approach, we take advantage of recent ad-

vances in convex optimization methods [6] to develop algo-

rithms allowing us to solve the convex relaxation formulation

of multilabel disparity estimation problems. Two proximal

methods are compared : a primal approach and a primal-dual

one. The performances of these techniques are also evaluated

with respect to another convex relaxation approach.

The paper is organized as follows: Section 2 introduces

the considered relaxed formulation for disparity estimation.

Then, in Section 3, a splitting approach for addressing the

related optimization problem is described, together with the

derivation of the required proximal operators. In Section 4,

the implementation of the two proposed parallel proximal

splitting algorithms are explained in detail. Section 5 presents

the results of both algorithms. Section 6 concludes the present

work.
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2. CONVEX FORMULATION

We aim at solving the disparity estimation problem, based on

the following global error measure

J(u) =
∑

(x,y)∈D\O

φ
(
IL(x, y), IR(x− u(x, y), y)

)
(1)

where u is the disparity field to be estimated, IL desig-

nates the left image, IR the right one, D = {1, . . . , N} ×
{1, . . . ,M} is the considered discrete image domain and O
the occluded areas. φ : R2 →] − ∞,+∞] can be basically

any similarity measure. We further assume that the dispar-

ity values are quantized over Q + 1 levels, taking values

{r0, . . . , rQ} where r0 < . . . < rQ. Following the approach

in [4], we introduce the binary fields θ1, . . . , θQ such that, for

every i ∈ {1, . . . , Q} and every (x, y) ∈ D,

θi(x, y) =

{
1 if u(x, y) ≥ ri

0 otherwise.
(2)

It can be noticed that the multivariate image θ = (θ1, . . . , θQ)
belongs to the set:

B = {θ = (θ1, . . . , θQ) ∈ ({0, 1}N×M )Q |
(
∀(x, y) ∈ D

)

1 ≥ θ1(x, y) ≥ . . . ≥ θQ(x, y) ≥ 0}.

More precisely, there exists a bijection between the set of dis-

parity fields u ∈ {r0, . . . , rQ}N×M and the set of multivari-

ate images θ as defined above. We have then:

u(x, y) = r0 +

Q∑

i=1

(ri − ri−1)θi(x, y). (3)

The estimation of the quantized disparity u is thus equivalent

to finding the associated multivariate binary field θ ∈ B. It

can be further observed that the global error measure can be

re-expressed as a linear function of θ as follows:

J̃(θ) =

Q∑

i=0

∑

(x,y)∈D\O

φ
(
IL(x, y), IR(x− ri, y)

)

×
(
θi(x, y)− θi+1(x, y)

)
(4)

by setting θ0 ≡ 1 and θQ+1 ≡ 0. Disparity estimation is

an ill-posed problem due in particular to the presence of uni-

form areas and occlusions. A classical solution to overcome

this problem is to resort to a regularization of the problems by

minimizing the criterion J + ρ, where ρ is some appropriate

smoothness measure. As a disparity field often looks like a

piecewise constant image with sharp contours, an appropriate

smoothness measure is the total variation: ρ = µ tv, where

µ > 0 is the so-called regularization hyperparameter. Various

expressions of the total variation can be found in the discrete

case. For example, one can use the classical discrete form

of the isotropic total variation. Following [4], the total varia-

tion regularized problem can be formulated as the following

optimization problem:

minimize
θ∈B

J̃(θ) + µ

Q∑

i=1

(ri − ri−1)tv(θi). (5)

Although J̃ and tv are convex functions, the problem is non-

convex due to the nonconvexity of the set B. As demonstrated

in [4], the following convex relaxation of the optimization

problem can however be employed:

minimize
θ∈R

J̃(θ) + µ

Q∑

i=1

(ri − ri−1)tv(θi) (6)

whereR is the convex hull of B, that is

R = {θ = (θ1, . . . , θQ) ∈ ([0, 1]N×M )Q |
(
∀(x, y) ∈ D

)

1 ≥ θ1(x, y) ≥ . . . ≥ θQ(x, y) ≥ 0}.

Note that, since J̃ is a continuous convex function defined

on (RN×M )Q, tv is a continuous convex function defined on

R
N×M , and R is a compact convex set of (RN×M )Q, the

existence of a solution to Problem (6) is secured by standard

results in convex optimization. The uniqueness of a solution

is not however guaranteed.

3. PROXIMAL SOLUTIONS

3.1. Problem splitting

In order to efficiently solve Problem (6), we will need to in-

troduce auxiliary variables and functions. Let us first define

the following linear function:
(
∀θ ∈ (RN×M )Q

)

f1(θ) = J̃(θ)−
∑

(x,y)∈D\O

φ
(
IL(x, y), IR(x− r0, y)

)

=

Q∑

i=1

∑

(x,y)∈D

ϕi(x, y)θi(x, y) = 〈ϕ | θ〉

where 〈· | ·〉 designates the standard Euclidean inner prod-

uct, ϕ = (ϕ1, . . . , ϕQ) ∈ (RN×M )Q, and, for every i ∈
{1, . . . , Q} and (x, y) ∈ D,

ϕi(x, y) =





φ
(
IL(x, y), IR(x− ri, y)

)

−φ
(
IL(x, y), IR(x− ri−1, y)

)
if (x, y) 6∈ O

0 otherwise.

(7)

Let us now consider the following expression of the discrete

total variation regularization term:
(
∀θ ∈ (RN×M )Q

)
ρ̃(θ) =
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f2(Dθ). In the above expression, D is the linear operator

from (RN×M )Q to (RN×M )2Q given by

D =




D1 0 . . . 0

D2 0
...

0 D1

0 D2

...

...
... 0

0 0 0 D1

0 0 . . . 0 D2




(8)

where D1 and D2 are the spatial gradient operators operat-

ing in the horizontal/vertical directions, which will be peri-

odized for simplicity sake. These operators correspond to 2D

filters with frequency responses 1 − exp(−2πıν1) and 1 −
exp(−2πıν2), where (ν1, ν2) are the 2D horizontal/vertical

frequency variables. In addition, f2 : (R
N×M )2Q → R is the

convex function which, in the isotropic case, takes the form:

(
∀δ = (δ1,1, δ1,2, . . . , δQ,1, δQ,2) ∈ (RN×M )2Q

)

f2(δ) = µ

Q∑

i=1

(ri − ri−1)

×
N∑

x=1

M∑

y=1

√(
δi,1(x, y)

)2
+

(
δi,2(x, y)

)2
. (9)

To take into account the constraint set R we will also in-

troduce the convex sets C1 = ([0, 1]N×M )Q and C2 =

([0,+∞[
N×M

)Q−1. We have then: θ ∈ R ⇔
(
θ ∈

C1 and Lθ ∈ C2
)
, where L : (RN×M )Q → (RN×M )Q−1

is the linear operator defined as: (∀θ ∈ (RN×M )Q) Lθ =
(ζ1, . . . , ζQ−1) and, for every (x, y) ∈ D,




ζ1(x, y)
...

ζQ−1(x, y)


 = L



θ1(x, y)

...

θQ(x, y)


 (10)

with

L =




1 −1 0 . . . . . . 0

0 1 −1
. . .

...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0 . . . . . . 0 1 −1



∈ R

(Q−1)×Q. (11)

Altogether, the above considerations show that Problem (6) is

equivalent to

minimize
θ∈(RN×M )Q

f1(θ) + f2(Dθ) + ιC1(θ) + ιC2(Lθ) (12)

where ιC1 and ιC2 are the indicator functions of the closed

convex sets C1 and C2.

Based on the above reformulation, different proximal im-

plementations can be thought of. In particular, a primal al-

gorithm such as PPXA+ [7] can be employed or primal-dual

solutions [8, 9] can be applied.

3.2. Proximity operators

For being able to apply proximal algorithms, we need to

compute the proximity operators of the different functions in-

volved in the previous section. Since the proximity operator

of a closed convex set C of a Hilbert space reduces to the pro-

jection PC onto this set, the proximity operators of ιC1 and ιC2
in (12) are easy to compute. Since f1 is a linear function, it

can be further deduced from standard properties of the prox-

imity operator [6] that the proximity operator of γf1 + ιC1
with γ ∈ ]0,+∞[ is given by proxγf1+ιC1

= PC1(·−γϕ). Fi-

nally, the proximity operator of γf2 with γ ∈ ]0,+∞[ follows

from existing results [10]. Note that, in general, there does

not exist closed form expressions for the proximity operator

of the composition of a convex function and a linear operator,

which is one of the difficulties we will have to address in the

choice of the optimization algorithm.

4. ALGORITHMS

4.1. PPXA+

The application to Problem (12) of the extension of the Paral-

lel Proximal Algorithm (PPXA [10]) which was proposed in

[7] leads to the following iterative algorithm:

Initialization

(ω1, ω2, ω3) ∈ ]0,+∞[3 , λ ∈]0, 2[

t
(0)
1 ∈ (RN×M )Q, t

(0)
2 ∈ (RN×M )2Q,

t
(0)
3 ∈ (RN×M )Q−1

θ(0) = (ω1 Id +ω2D
∗D + ω3L

∗L)−1

×(ω1t
(0)
1 + ω2D

∗t
(0)
2 + ω3L

∗t
(0)
3 )

For n = 0, 1, . . .

p
(n)
1 = PC1(t

(n)
1 − ω−1

1 ϕ)

p
(n)
2 = prox f2

ω2

(t
(n)
2 )

p
(n)
3 = PC2(t

(n)
3 )

c(n) = (ω1 Id +ω2D
∗D + ω3L

∗L)−1

×(ω1p
(n)
1 + ω2D

∗p
(n)
2 + ω3L

∗p
(n)
3 )

t
(n+1)
1 = t

(n)
1 + λ(2c(n)

− θ(n)
− p

(n)
1 )

t
(n+1)
2 = t

(n)
2 + λ

(
D(2c(n)

− θ(n))− p
(n)
2

)

t
(n+1)
3 = t

(n)
3 + λ

(
L(2c(n)

− θ(n))− p
(n)
3

)

θ(n+1) = θ(n) + λ(c(n)
− θ(n)).

(13)

Hereabove ω1, ω2, ω3 and λ are parameters which have to

be chosen experimentally. ω1, ω2 and ω3 can be viewed as

weighting factors in the combination of the proximity opera-

tors, whereas λ is a relaxation parameter. The expressions of

PC1 , prox f2
ω2

, and PC2 are provided in Section 3.2. D∗ and L∗
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designate the adjoint operators of D and L. The main diffi-

culty in the implementation of the algorithm lies in the inver-

sion of ω1 Id +ω2D
∗D+ω3L

∗L. It can be seen that this op-

erator corresponds to a 2D MIMO (Multi-Input Multi-Output)

filter whose multivariate frequency response is S(ν1, ν2) =
G(ν1, ν2)I + ω3L

⊤
L ∈ R

Q×Q, where G(ν1, ν2) is the fol-

lowing frequency response of an invertible SISO filter:

G(ν1, ν2) = ω1+ω2(|1−exp(2πıν1)|2+|1−exp(2πıν2)|2).
(14)

Hence, (ω1 Id +ω2D
∗D+ ω3L

∗L)−1 corresponds to the 2D

MIMO filter with frequency response (S(ν1, ν2))
−1. The

computations can be efficiently performed by resorting to the

use of 2D Fast Fourier Transforms.

Proposition 4.1 in [7] shows that the sequences (p
(n)
1 )n∈N,

(c(n))n∈N and (θ(n))n∈N generated by Algorithm (13) con-

verge to a solution θ to Problem (6).

4.2. M+S FBF algorithm

Alternatively, we propose to employ the following Mono-
tone+Skew Forward-Backward-Forward algorithm The main
advantage of this primal-dual parallel proximal algorithm is
that it does not to require any operator inversion.

Initialization

γ ∈ ]0,+∞[

v
(0)
1 ∈ (RN×M )Q, v

(0)
2 ∈ (RN×M )Q, v

(0)
3 ∈ (RN×M )Q

t
(0)
1 ∈ (RN×M )Q, t

(0)
2 ∈ (RN×M )2Q, t

(0)
3 ∈ (RN×M )Q−1

For n = 0, 1, . . .

θ(n) = 1
3
(v

(n)
1 + v

(n)
2 + v

(n)
3 )

v̂
(n)
1 = v

(n)
1 − γt

(n)
1

v̂
(n)
2 = v

(n)
2 − γD∗t

(n)
2

v̂
(n)
3 = v

(n)
3 − γL∗t

(n)
3

t̂
(n)
1 = t

(n)
1 + γv

(n)
1

t̂
(n)
2 = t

(n)
2 + γDv

(n)
2

t̂
(n)
3 = t

(n)
3 + γLv

(n)
3

q(n) = 1
3
(v̂

(n)
1 + v̂

(n)
2 + v̂

(n)
3 )

p
(n)
1 = t̂

(n)
1 − γPC1(γ

−1
(
t̂
(n)
1 − ϕ)

)

p
(n)
2 = t̂

(n)
2 − γ proxγ−1f2

(γ−1 t̂
(n)
2 )

p
(n)
3 = t̂

(n)
3 − γPC2(γ

−1t̂
(n)
3 )

ṽ
(n)
1 = q(n)

− γp
(n)
1

ṽ
(n)
2 = q(n)

− γD∗p
(n)
2

ṽ
(n)
3 = q(n)

− γL∗p
(n)
3

t̃
(n)
1 = p

(n)
1 + γq(n)

t̃
(n)
2 = p

(n)
2 + γDq(n)

t̃
(n)
3 = p

(n)
3 + γLq(n)

For j = 1, 2, 3⌊
v
(n+1)
j = v

(n)
j − v̂

(n)
j + ṽ

(n)
j

t
(n+1)
j = t

(n)
j − t̂

(n)
j + t̃

(n)
j .

(15)

According to [9, Prop.4.4], if γ ∈ [ε, (1 − ε)/β] where

β = max(1, ‖D‖, ‖L‖) and ε ∈]0, 1/(β + 1)[, then the se-

quence (θ(n))n∈N generated by Algorithm (15) converges to

a solution θ to Problem (6). In practice, to accelerate the con-

vergence, the step size γ has to be chosen as large as possible

(for example, ǫ = 0.01/(β + 1) and γ = (1 − ε)/β). Due

to the forms of operators L and D, we have ‖L‖ = ‖L‖ ≤ 2
and ‖D‖ = 2

√
2, so leading to β = 2

√
2.

5. SIMULATION RESULTS

The experiments have been performed on test images with

known ground truth disparity maps. For the computa-

tion of ϕ from (7) for non-integer pixel values, the fields

have been bilinearly interpolated. In the provided results,

the data term used is the mean absolute difference. The

accuracy of the results is measured in PSNR, defined as

PSNR = 10 log10
(
u2
max/MSE

)
, where umax is the max-

imum disparity value of the ground truth disparity image,

and

MSE =
1

|D|
∑

(x,y)∈D

|uground truth − ualgorithm|2. (16)

It should be noticed that since the algorithms aim at min-

imizing Criterion (6), they do not explicitly maximize the

PSNR, but getting a high PSNR is a side effect.

The regularization hyperparameter µ affects the smooth-

ness of the obtained disparity maps. If it is too small, the

resulting disparity map looks grainy. As it increases, the re-

sulting disparity map is smoothed out, while blurring the de-

tails. This parameter has been chosen experimentally in order

to maximize the PSNR. In the results, µ = 1.1 for ’Aloe’,

µ = 9 for ’Cones’ and µ = 3 for ’Saw’ and ’Corridor’. Al-

gorithms for automatically determining µ could also be em-

ployed at the expense of a higher computational cost.

Figure 1 illustrates the convergence of the two algorithms

as a function of running time for a Matlab implementation

on a single core architecture. They are obtained for ω1 = 1,

ω2 = 3 and ω3 = 2, λ = 1.8 and γ = 0.35. Even better

results could be obtained by choosing optimal parameters for

different step size values. Although PPXA+ converges faster,

it has a disadvantage of requiring a large amount of memory

to perform the MIMO-filtering and if applicable, storing the

filter. For a large number of quantization levels (about more

than 60), this makes it less feasible to perform the computa-

tions in Matlab.

Furthermore, it should be determined when it is appro-

priate to threshold the optimized disparity field so that it at

least approximately coincides with a solution to (5). If the

algorithms were run for an infinite amount of time and for

a continuous-space model, the disparity map given by mini-

mizing (6) would be asymptotically discrete valued. In a real

context, the resulting fields can be thresholded if the approx-

imation of the disparity is accurate enough. The choice of

thresholding is not computationally demanding; first an un-

thresholded disparity map is computed, then the thresholding

which results in the highest PSNR is chosen.
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Fig. 1. Comparison of convergence for the two algorithms.

Image Aloe Cones Saw Corridor

Proposed algorithm 23.41 24.09 24.32 28.79

Algorithm [2] 21.12 23.97 23.08 25.72

Table 1. PSNR of the proposed algorithms compared with [2]

Experimental results for PPXA+ show that the PSNR is

relatively stable after 200 iterations for the test images, and

only a small gain is attainable afterwards.

Table 2 compares the resulting PSNR values with those

provided by another algorithm, the one in [2], where the ini-

tialization has been performed by block matching. Figure 2

displays the disparity maps obtained with the proposed algo-

rithms.

6. CONCLUSION

We have presented a new convex relaxation approach for dis-

parity estimation based on proximal optimization algorithms.

The main advantage of this approach is that the algorithm

is not sensitive to the initial disparity map. It has also been

shown that for a reasonable number of disparity quantization

levels, PPXA+ outperforms the M+S FBF algorithm in terms

of convergence speed. It is worth mentioning that the pro-

posed methods could be applied to other multilabel segmen-

tation problems.
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