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ABSTRACT 
 
This paper presents asymmetric taper (or window)-based 
robust Mel frequency cepstral coefficient (MFCC) feature 
extraction for automatic speech recognition (ASR). 
Commonly, MFCC features are computed from a 
symmetric Hamming-tapered direct-spectrum estimate. 
Symmetric tapers have linear phase and also imply longer 
time delay. In ASR systems, phase information is usually 
discarded as human speech perception is relatively 
insensitive to short-time phase distortion. So, any linearity 
constraint on phase can be removed without adverse effects.  
Use of asymmetric tapers, having better frequency response 
and shorter time delay, for MFCC feature extraction in 
speech recognition can lead to better recognition 
performance. Using our proposed method it is possible to 
introduce asymmetry in any symmetric taper by adjusting 
only one additional parameter, which controls the degree of 
asymmetry. Experimental results on the AURORA-2 corpus 
show that the proposed asymmetric tapers outperform the 
symmetric Hamming taper in terms of word accuracy both 
in clean and noisy environments. 
 

Index Terms—Asymmetric taper, double dynamic 
range, speech recognition, Hilbert transform. 
 

1. INTRODUCTION 
 
Mel-frequency cepstral coefficient (MFCC) features are the 
most dominantly used in speech recognition systems.  
MFCC processing of speech signal begins with pre-
processing (includes DC removal and pre-emphasis, 
typically using a first-order high-pass filter). Short-time 
Fourier Transform (STFT) analysis is performed using a 
finite duration (20-30 ms) symmetric-shaped single taper 
(e.g., Hamming) technique to estimate the power spectrum 
of the signal, and triangular Mel-frequency integration is 
performed for auditory spectral analysis. The logarithmic 
nonlinearity stage follows, and the final static features are 
obtained through the use of a Discrete Cosine Transform 
(DCT). Therefore, the accuracy of the MFCC features 

depends on the accuracy of the power spectral estimate. 
Under matched conditions, MFCC features perform well 
but under mismatched environments (i.e., different training 
and testing environments due to channel, handset, additive 
background noise and reverberation), the performance 
severely deteriorates. The reason for this is that the direct 
spectral estimate used in MFCC feature computation gets 
affected by the factors (additive distortion, reverberation 
etc.) causing mismatched environments. In this paper, for 
robust estimation of the signal power spectrum, and hence 
robust MFCC features, we replace the symmetric Hamming 
taper by an asymmetric taper.   
Various tapers have been proposed in the literature for 
better spectral estimation of the signal [1]. Most of the 
speech recognition systems use symmetric tapers, such as 
Hamming, Hann, etc., because of their ease of 
implementation and linear phase property. Symmetry 
implies potential drawbacks such as longer time delay and 
frequency response limitations [2]. It is common belief in 
speech community that in human perception tasks as well 
as in automatic speech recognition systems the short-time 
phase spectrum plays very little (or, no) role. Phase 
information is usually completely disregarded in 
recognition systems; so there is no apparent reason for 
using symmetric tapers. Removal of symmetry constraints 
therefore give asymmetric tapers, having some better 
properties like shorter time delay (important for coding but 
less important for recognition) and robust frequency 
response. Some low delay speech coders, e.g., ITU-T G.729 
[4], use an asymmetric analysis taper, which is formed by 
combining two symmetric tapers, Hamming and cosine 
tapers. Nobody has attempted this asymmetric taper in 
speech recognition. The popularity of asymmetric tapers in 
speech coding suggests that their advantages can be applied 
in speech and speaker recognition systems as well. 
Asymmetric tapers, designed to solve a more complex 
minimax approximation problem, have been applied in a 
speech recognition task [2]. In [6], asymmetric double 
dynamic range (DDR) Hamming tapers were proposed by 
shifting the peak position of the symmetric DDR Hamming 
taper [3]. 
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In this paper we use a new method for the construction of 
an asymmetric taper based on an existing symmetric taper. 
Compared to the symmetric Hamming taper, only one 
additional parameter is required, which controls the degree 
of asymmetry, for the proposed asymmetric tapers. 
Proposed tapers have rapidly decaying side lobes and the 
width of the main lobe is larger than that of the Hamming 
taper. By robust estimation of a signal’s power spectrum 
and consequently MFCC features, we hope that the 
proposed asymmetric tapers achieve better speech 
recognition performance on the AURORA-2 corpus than 
the symmetric Hamming taper.   
 

2. SYMMETRIC TAPERS IN ASR 
 
Most speaker/speech recognition systems for short-time 
analysis of a speech signal use standard symmetric-shaped 
tapers such as Hamming, Hann, etc. These tapers have the 
linear phase property and have a particular shape of 
magnitude response [2]. Symmetric tapers have a closed-
form expression and are easily computable, but these tapers 
provide poor magnitude response under mismatched 
conditions. Also these tapers have larger time delay [2]. 
Relaxation of linear phase constraints can therefore lead to 
asymmetric tapers with better magnitude response both in 
matched and mismatched environments and with a shorter 
time delay.  Since a Hamming taper is widely used in 
speaker and speech recognition systems, in this paper we 
use this taper for performance comparison with the 
proposed asymmetric tapers.  

 
3. PROPOSED ASYMMETRIC TAPERS 

 
The proposed method for the construction of an asymmetric 
taper from a symmetric taper is shown in figure 1. From a 
symmetric taper  sw n of length N, the instantaneous phase 

 n is computed by applying a Hilbert transform to the 

symmetric taper. Then the asymmetric taper  atw n  is 
obtained as: 

      ,  0 -1n
at sw n cw n e n N    

where n is the time index,  sw n is the symmetric taper of 

length N,  ne is an asymmetric function,  is a parameter 
that controls the degree of asymmetry, and c is the 
normalizing constant given by 
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For positive values of  the asymmetric function  ne acts 
as a high-pass filter (HPF), it acts as a low-pass filter (LPF) 
for negative values of  and    at sw n w n  when 0.   

In this paper we propose two asymmetric tapers, denoted in 
this paper as Proposed II and Proposed I, based on the 
symmetric Hamming and double dynamic range (DDR) 
hamming tapers [3], respectively, for different values of  . 
The DDR Hamming taper was proposed in [3] for use in 
higher-lag autocorrelation spectrum estimation (HASE) 
method. The DDR Hamming window is computed from an 
N/2-length Hamming window in the following way [3]: 

 Calculate a biased autocorrelation sequence of 
length N-1 having a maximum at the zero-th lag 
in the centre from a Hamming window of length 
N/2. 

 The desired DDR window of length N is found by 
padding one zero value at the end of the 
autocorrelation sequence. 

Since the DDR window is constructed from a Hamming 
window and has dynamic range (86 dB) twice the dynamic 
range of a Hamming window (43 dB), it is called a DDR 
Hamming window.  
 

 
 
Fig. 1. Block diagram of the proposed asymmetric taper. 
Parameter  controls the degree of asymmetry of the asymmetric 
taper. 
 
According to [6], window centered on the pitch helps to 
have a good characterization of the formants, because the 
information regarding the spectral envelope (and the 
formants) is located on the zero lag area as well as on the 
pitch and on lags multiple of the pitch. The optimal values 
for  are chosen using above mentioned information and 
by tuning on the development data.  
Fig. 2 presents a time and frequency domain comparison of 
the Hamming and the proposed asymmetric tapers for 
frame length N = 200 samples. It is observed from fig. 2 (b) 
that all the asymmetric tapers have wider mainlobe widths 
and higher attenuation in the sidelobes than the Hamming 
taper.  
Asymmetric tapers also result in shorter time delay [2], 
which is important for coding but less important for the 
recognition task alone. 
Figs. 3 (a) and (b) show a three-tone signal in the time 
domain and a comparison of the taper influence on the 
estimated power spectrum of a signal consisting of three 
pure tones, respectively. Figs. 4 (a) and (b) present one 
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frame of a speech signal, degraded by car noise with SNR = 
5 dB, in the time domain and  a comparison of taper 
influence on the estimated power spectrum of that of a 
speech signal using symmetric Hamming and proposed 
asymmetric tapers. Larger suppression in the sidelobes (can 
be obtained by widening the mainlobe width) and rapidly 
decaying height of sidelobes are important for speech 
recognition performance [2]. It is also observed from fig. 4 
(b) that the asymmetric tapers also result in a reduction of 
variance of the spectrum ordinates compared to the 
Hamming window. Fig. 5 presents speech spectrograms of 
a clean signal (MRK_213Z1ZZA.08) obtained using the 
symmetric Hamming window and the proposed asymmetric 
tapers. It is observed from fig. 5 that the proposed 
asymmetric tapers do not distort the clean signal. Fig. 6 
presents speech spectrograms of a noisy signal 
(MRK_213Z1ZZA.08, subway noise, SNR = 15 dB) 
obtained using the various windowing techniques. The 
proposed asymmetric tapers show substantially lower noise 
in the spectrograms. 
 

 
 

 

Fig. 2. Comparison of symmetric Hamming and proposed 
asymmetric tapers in the (a) time domain, (b) frequency 
domain (magnitude response in dB). 

 

 

Fig. 3. (a) Time domain signal comprise of three–tones, (b) 
comparison of taper influence on the estimated power 
spectrum of a simple three-tone signal using symmetric 
Hamming and proposed asymmetric tapers.  

 

  

Fig. 4. (a) One frame of speech signal in the time domain, car 
noise, SNR = 5 dB, (b) comparison of taper influence on the 
estimated power spectrum of a frame of speech signal, 
corrupted with 5 dB car noise, using symmetric Hamming and 
proposed asymmetric tapers.  

 
4. EXPERIMENTAL RESULTS 

 
4.1. Experimental Setup 
 
The AURORA-2 [5] (connected digit, small vocabulary) 
database is used for comparing the performances of the 
proposed asymmetric-shaped tapers to the conventional 
Hamming window, in the context of speech recognition. 
There are two training sets (clean training set and multi-
condition training set) and three test sets (test sets A, B and 
C). The clean training set consists of clean speech 
recordings only from 55 male and 55 female adults. The 
multi-condition training consists of both clean and noisy 
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speech split into 20 subsets. The 20 subsets represent 4 
different noise scenarios (subway, babble, car and 
exhibition hall) at six different SNRs (20 dB, 15 dB, 10 dB, 
5 dB, 0dB and -5 dB). Test set A is composed of speech 
with conditions matched to the multi-condition training set, 
test set B is composed of speech with non-matched 
background noise (restaurant, street, airport and train-
station) and test set C is composed of speech with partly 
matched (with multi-condition training) background noise 
and non-matched convolutional noise (MIRS (modified 
intermediate reference system) filtered subway and street 
noise). The clean training set constitutes mismatched 
training/testing conditions whereas the multi-condition 
training set constitutes much more matched training/testing 
conditions. In this paper we train the recognizer on clean 
utterances only and perform recognition on all three test 
sets. 
For our experiments, we use 13 MFCC features (including 
the 0th cepstral coefficient) augmented with their delta and 
double delta coefficients, making 39-dimensional feature 
vectors. The analysis frame length is 25 ms with a frame 
shift of 10 ms. The delta and double features were 
calculated using 5-frame and 3-frame windows, 
respectively. For all the feature extractors, the features, 
after appending delta and double delta features, were 
normalized using the conventional mean and variance 
(MVN) normalization technique over the whole utterance. 
For the recognition task we use the HTK speech recognizer. 
In the experiments we choose a simple HMM-based system 
with 16 states per word model, 3 Gaussian components per 
state.  
 
4.2. Results and Discussion 
 
The AURORA-2 corpus [5] is used for comparing the 
performances of the proposed asymmetric tapers (Proposed 
I for 2.31, 2.21, 2.21    and Proposed II for 1.41   ) to 
the conventional Hamming taper, in the context of speech 
recognition. Most of the Hamming taper-based feature 
extractors used in speech recognition perform well in 
controlled environments where speech data is collected 
from reasonably clean environments.  
Real-life environments are far less controlled. Acoustic 
mismatch due to different training and testing 
environments degrades the performance of speech 
recognition systems. For the performance evaluation of the 
asymmetric taper-based MFCC feature extractors, we have 
chosen mismatched conditions. Features extracted from the 
clean training data are used for training the recognizer. For 
testing we have used all ten noise scenarios of the 
AURORA-2 corpus at six different SNRs (clean (SNR > 40 
dB), 20 dB, 15 dB, 10 dB, 5 dB, 0 dB).  
 

 

Fig. 5. Spectrograms of clean speech signal obtained using the 
symmetric Hamming and the proposed asymmetric tapers. X-axis 
represents time in seconds and Y-axis represents the frequency in 
Hz. 

 
Fig. 6. Spectrograms of noisy speech signal (subway noise, SNR 
= 15 dB) obtained using the symmetric Hamming and the 
proposed asymmetric tapers. X-axis represents time in seconds 
and Y-axis represents the frequency in Hertz (Hz). 
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Tables 1-3 present the average word accuracy (in %) of the 
proposed asymmetric tapers and symmetric Hamming 
taper-based feature MFCC extractors, considered in this 
paper, on test sets A, B, and C, respectively.  In all noise 
scenarios except in two cases at 20 dB SNR, the proposed 
asymmetric tapers provide better word accuracy than the 
widely used symmetric Hamming window. It is observed 
from the experimental results that the improvements 
obtained by the asymmetric tapers compared to the 
symmetric taper, in terms of word accuracy, are much 
higher in low SNR conditions, specifically at 0 dB and 5 
dB, than the high SNR cases. These results indicate that the 
asymmetric tapers provide better magnitude response of the 
speech signal than the symmetric one, both in matched and 
mismatched (due to additive and channel effects) 
environments.  

Table 1: Average word accuracy in percentage (averaged over all 
noise conditions of test set A) obtained using a Hamming window 
and the proposed asymmetric tapers. The best results are in bold 
face. 

Set A  Clean 20 dB  15 dB 10 dB 5 dB 0 dB 

Hamming 99.03 96.52 92.95 84.55 65.09 31.76 

Proposed I 
 ( =2.31) 99.09 96.52 93.22 85.21 68.14 35.55 

Proposed I  
( =2.21) 99.09 96.52 93.13 85.14 67.68 33.96 

Proposed I 
 ( =-2.21) 99.11 96.80 93.48 85.32 67.11 32.22 

Proposed II  
( =-1.41) 99.18 96.67 93.09 84.62 66.38 33.89 

Table 2: Average word accuracy in percentage (averaged over all 
noise conditions of test set B) obtained using the Hamming 
window and proposed asymmetric tapers. The best results are in 
bold face. 

Set B  Clean 20dB  15dB 10dB 5dB 0dB 

Hamming 99.03 96.94 93.68 85.77 66.62 33.85 

Proposed I 
 ( =2.31) 99.09 96.84 93.71 86.71 68.69 35.64 

Proposed I  
( =2.21) 99.09 96.80 93.78 86.65 68.12 34.04 

Proposed I 
 ( =-2.21) 99.11 96.92 93.89 86.43 67.61 33.72 

Proposed II  
( =-1.41) 99.18 96.83 93.81 86.12 67.63 34.88 

Table 3: Average word accuracy in percentage (averaged over all 
noise conditions of test set C) obtained using the Hamming 

window and proposed asymmetric tapers. The best results are in 
bold face. 

Set C Clean 20dB  15dB 10dB 5dB 0dB 

Hamming 99.04 96.87 93.27 85.42 67.05 33.82 

Proposed I 
 ( =2.31) 99.06 96.86 93.18 86.09 69.80 39.14 

Proposed I  
( =2.21) 99.07 96.71 93.17 85.89 69.32 37.04 

Proposed I 
 ( =-2.21) 99.00 96.84 93.19 86.40 69.06 35.49 

Proposed II  
( =-1.41) 99.12 96.81 93.33 85.77 68.24 36.39 

 
5. CONCLUSION 

 
In this paper we proposed a generalized method for the 
construction of asymmetric tapers from a symmetric taper. 
We incorporated those tapers in the MFCC feature 
extraction process and compared their performances in the 
context of speech recognition on the AURORA-2 corpus. 
Experimental results indicate that the asymmetric tapers 
outperformed the symmetric Hamming taper. The largest 
improvements in % word accuracy over the baseline were 
observed for SNRs 0 dB and 5 dB on all test sets.  Here, we 
tuned the values of the parameter  experimentally on the 
development data. Our future work would be to make 
 adaptive so that no manual tuning is needed. 
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