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ABSTRACT

Indoor location-based positioning systems have attracted no-
table interest during recent years for a wide range of personal
and commercial applications. As is well known, the GPS sys-
tems does not allow for accurate positioning indoors, result-
ing in the development of various forms of indoor positioning
techniques, mostly being based on radio frequency measure-
ments. In this paper, we examine a novel way to reduce the
positioning error by using the notion of separating ellipsoids
in the context of received signal strength (RSS) fingerprinting.
To avoid excessive computational complexity, the algorithm
is paired with the A* algorithm, exploiting mapping informa-
tion of the building of interest, to take into account obstacles
such as walls. The proposed algorithm is evaluated on RSS
measurements made in a shopping mall, and found to offer an
improved positioning accuracy as compared to the Gaussian
kernel approach.

Index Terms— Indoor positioning, wireless systems,
separating ellipsoids

1. INTRODUCTION

Positioning systems have since the advent of the GPS sys-
tem become an integral part of our society, finding an ever
growing number of applications in a wide range of fields. As
is well known, the satellite-based GPS system is regrettably
limited in the sense that it does not allow for accurate po-
sitioning in an indoor environment, and the development of
systems that would allow for indoor positioning has during
recent years become an active research field. Notably, several
systems based on radio frequency (RF) measurements have
been proposed, often exploiting a fingerprinting approach that
matches the measured received signal strength (RSS) at the
measurement location to a range of predetermined location
fingerprints, estimating the likely location as the one mini-
mizing some form of distance measure to these fingerprints
(see, e.g., [1-12], and the references therein). Given the pro-
liferation of wireless local area networks (WLANS) and since
a power-sensing function is available in every WLAN de-
vice, RSS-based techniques based on the IEEE 802.11 stan-
dard has been found to be a frequent and cost-effective solu-
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tion in many location-based systems. Several such wifi-based
systems have been proposed, for example, neural networks,
kernel-based techniques, and probabilistic approaches to form
the distance measure between the RSS measurements from
the available access points (AP) and the fingerprints (see, e.g.,
[8—11]). In this work, we propose a positioning algorithm that
uses the notion of separating ellipsoids, introduced in [13] in
the context of vowel recognition, to form the fingerprints and
the distance measure, such that maximally separating ellip-
soids are computed from the training data for each considered
location. Any measurement inside such an ellipsoid is then
mapped to that location, whereas any measurement which is
outside all the ellipsoids is mapped to the location ellipsoid
being closest to the measurement. Typically, the measure of
closeness to the various fingerprints is then used to form an
interpolated estimates, such that the user is allowed to also be
positioned in between fingerprint locations. Given the com-
putational complexity of forming separating ellipsoids for a
large number of locations and training measurements, each
typically resulting from a large number of AP, it is neces-
sary to reduce the dimensionality of the problem sufficiently.
Common ways to handle this is by using AP selection [14,15]
or projection techniques [1,4, 16]. Herein, we exploit the pro-
jection technique in [4], but then also further reduce the di-
mensionality of the resulting maximization by restricting the
number of considered locations. This may be done by exploit-
ing the previously found position, typically being formed us-
ing a basic positioning algorithm such as noted in the above
references, and then subsequently only consider locations that
may be physically accessible at the time of the new mea-
surement. Here, using the popular A* algorithm introduced
in [17], we exploit mapping information of the building of in-
terest, taking into account obstacles such as walls, to find the
set of possible locations given one current position. Clearly,
the proposed dimensionality reduction will be vulnerable to
poor initial positioning estimates and/or possible positioning
error, potentially causing the position of interest to be ex-
cluded from the set of feasible locations. To reduce the risk
for such an error, one needs to include an overarching safe-
guard algorithm. If the overall fit of the ellipsoid algorithm
is poor, the positioning estimate shall instead be formed over
the entire set of locations using a basic algorithm.



Fig. 1. The figure shows the measured distance and path be-
tween the nearby location without considering the geometry
of the indoor environment. The black marks indicate the fin-
gerprint locations.

2. PROBLEM FORMULATION AND PROPOSED
POSITIONING ALGORITHM

Consider a collection of NV indoor positions with coordinates
p = (z,y, z) with respect to some predefined reference point.
For simplicity, it is assumed that for each location, M mea-
surements of the RSSs measurable at the location have been
obtained in a training phase. These measurements have been
arranged such that qi ¢ contains the RSSs for location & at
time ¢, ordered such that each vector contains a response from
all AP measurable in the entire training set, with zeroes being
inserted for those APs not measured at that location and/or
time. Using the multiple discriminant analysis (MDA) based
projection approach introduced in [4], one may then construct
a projection matrix A that forms the most discriminant fea-
tures of the between-class and within-class scattering matri-
ces, such that the maximally discriminant components (DCs)
may be formed as

Zre = Aqp ()

for all locations k and measurement times £, with the dimen-
sion of the projection matrix selected such that it restricts the
dimensionality of the resulting DCs to only contain the D
most relevant dimensions (see [4] for further details). As any
ellipsoid in R” may be viewed as the intersection of a ho-
mogeneous ellipsoid centered at the origin, and a hyperplane
in RP*! along [z, 1] with z € RP, we proceed to form the
augmented and transformed measurement vectors (see [13]
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Fig. 2. The figure shows the measured distance and path be-
tween the nearby location taking the geometry of the indoor
environment into account. The black marks indicate the fin-
gerprint locations.

for further details on this reformulation)

Xkt = [ ZI{’K } (2)

and compute the separating ellipsoids, Py, as the semi-
definite program (SDP) [13]

o 2kt Mt @
subj. to X}, ®rxpe < 1+ 1k,
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This minimization forms two separating ellipsoids that share
the same center and axis directions. The second ellipsoid is
larger than the first by a factor p, subsequently termed the sep-
aration ratio. Thus, the larger the separation ratio, the wider
apart the measurement clusters from the different locations
will be. The inner ellipsoid is constructed to enclose all mea-
surements X, ¢ from location &, for all the DCs, whereas all
the measurements from the other locations, x; ¢, for j + k,
V¢, are restricted to be outside the larger second ellipsoid. It
is worth noting that the introduced slack variables, 1, ¢, allow
some marginal points of the class k to be outside the inter-
nal ellipsoid, with some points of the remaining classes to be
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Fig. 3. Positioning errors for the Gaussian kernel method and
the proposed ellipsoidal-based method.

inside the external ellipsoid. The minimization of the sum
of these slack variables thus corresponds to the solution hav-
ing the smallest number of outlier measurements. As a re-
sult, if the measurements are well separated, the sum of these
slack variables will be zero. We refer the reader to [13, 18]
for a discussion on how the resulting convex optimization
problem in (3) can be solved efficiently, but note that as is
clear from the formulation, the dimensionality of minimiza-
tion in (3) grows quickly with a growing number of loca-
tions, training measurements and DCs. For realistic situa-
tions, this may result in a computationally prohibitive opti-
mization problem, and there is therefore an urgent need to re-
strict the number of considered locations for each minimiza-
tion to allow for a practically working solution. One way to
achieve this is to compute the distance to nearby locations
and only include those locations close to the earlier position,
which in this sense is treated as being known. Clearly, this
is only possible after first acquiring an initial location esti-
mate, but allows for a notable computational simplification
after that. Let z = [z1,...,2P]T denote the measured RSS
vector that should be used for positioning, and py, the coordi-
nates for location k. Herein, considering all possible locations
in forming the estimate, we compute such an initial, basic,
location estimate using the Gaussian kernel method, which
forms the estimated position using the interpolation formula
(see, e.g., [4,9])

N
P=> wnpn. )
n=1

where w,, denotes the weight for location n, with a larger w,,
thereby indicating a likelier location, being formed as

o CnP(Z|pn)

= — )
Z CkP(Z|pk)
k=1

n
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Fig. 4. Mean positioning errors for the proposed ellipsoidal-
based method as a function of p.

with the weights cy, for now being set to one, and

D d d

z _uk

exp <—( 25 )2> (©)

with uf and s denoting respectively the mean and variance
for the dth DC of the measured RSS vectors at the kth lo-
cation, as computed using the training data. After such a
location estimate has been established, we proceed to only
consider the locations deemed feasible to reach from this lo-
cation. These may be found using strategies such as the A*
algorithm [17], which is commonly used in various forms of
computer games for similar purposes. The algorithm exploits
the geometry of the indoor environment to compute the clos-
est allowed path between the fingerprint locations, without
passing through the walls. With this information, the pro-
posed ellipsoidal-based positioning estimate is formed with
the weights in (4) instead being computed using the separat-
ing ellipsoids obtained from the training data using (3) as

1

P(z|py) = -

d=14/2msy;

(N

with the summation now being formed over only the reach-
able locations, and with the weights being set to zero for all
other locations. To further penalize positions further away
from the previous location (as a way to indicate that these are
more unlikely than the closer ones), one may introduce a fur-
ther weighting, given as ¢y in (5) and (7), that in some sense
reflects the distance to the location. We have found that a sim-
ple such scheme can be beneficial, and will therefore include
the weighting

1 if0< B, <bm
ck =408 ifb<E, <8m (8)
0.6 iIfS<E,<12m



| Method | Mean error | Max error | | Method | Mean error | Max error |
Gaussian method (All) 1.7 25.8 Gaussian method (All) 4.7 28.8
Gaussian method (Reachable) 1.4 11.0 Gaussian method (Reachable) 3.2 12.3
Ellipsoid method (Reachable) 1.1 49 Ellipsoid method (Reachable) 2.3 4.8
Combined method (Reachable) 1.3 10.9 Combined method (Reachable) 2.4 7.5

Table 1. The positioning errors for the ground floor data set.

where Ej, denotes the Euclidean distance between the previ-
ous location and the examined location k. Clearly, the here
used weighting is quite ad hoc, and could likely be improved
by being more carefully designed,

3. RESULTS

In order to evaluate the proposed algorithm, we examine two
data sets measured at the Hansa Mall in Malmé, Sweden.
The first set, measured at the first floor of the mall, consists
of 38 locations, with 160 wifi measurements for locations ¢
with £ = 1,...,35, and 80 wifi measurements for locations
¢ = 36,37, 38. The second data set, measured at the ground
floor, consists of 30 locations, each with 160 wifi measure-
ments. Clearly, one may exploit the information in the z coor-
dinate to allow for transitions between floors in the building,
but will then also noticeably benefit from only allowing floor
transitions at locations where such are appropriate. To ensure
this requires a bit further care, for instance, the interpolation
in (4) needs to be modified appropriately, and to simplify the
evaluation, the floor level has here been assumed known, and
the z coordinate is therefore not used in the following. Fig-
ure 1 illustrates the geometry of the first floor of the mall,
as well as shows the Euclidean distances from an assumed
location to several nearby locations, without considering the
geometry of the indoor environment. As is clear from the fig-
ure, these distances are misleading. For instance, the distance
to the location given as 16 m is clearly further away if one
takes the walls into account. Applying the A* algorithm on
this map allows for a notably more accurate distance mea-
surement, as shown in Figure 2, where the distance to the
mentioned location is now found to be 44 m. Clearly, this
makes it difficult to move to this location with the time given
between RSS measurements, and therefore this location, as
well as other distant locations, should not be considered as
possible locations to move to from the current location. Prior
to computing the separating ellipsoids, for each location we
must find the other locations within a physical distance, dpax,
that can be considered possible to move to from that location.
The choice of d,,, should be made considering that the cur-
rent location estimate will contain some margin of error and
should therefore be somewhat larger than one can assume rea-
sonable to move to, even if running. Then, for each location,
we find the separating ellipsoids for that location using (3),
considering only the locations within a distance of dy,,x from
the considered location. Herein, we use a maximal distance
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Table 2. The positioning errors for the first floor data set.

of dmax = 12 m. Tables 1 and 2 present the resulting mean
and maximum positioning errors in meters for the proposed
method, using a separation ratio of p = 1.05, as compared to
the Gaussian kernel method which uses all the possible lo-
cations as well as only the ones deemed reachable using the
distances found from the A* algorithm. In our experience, the
performance is robust to the choice of p, as is also illustrated
in Figure 4, showing the mean positioning error of the pro-
posed ellipsoid-based method as a function of p. The tables
also show the performance of a combined method that forms
its weights as the average weights from the Gaussian kernel
and the ellipsoidal-based weights. As is clear from the tables,
the Gaussian kernel method is able to form reasonably accu-
rate estimate for both data sets, although it suffers from some
very large positioning errors. This is illustrated in Figure 3
showing the histogram of the positioning errors for the first
floor data set. The ground floor has a better radio environment
due to smaller open areas, and have only a few large position-
ing errors. If only considering the reachable locations, the
Gaussian kernel method is notably improved, essentially by
the absence of positioning errors larger than dpyax. The pro-
posed ellipsoidal-based approach is seen to further reduce the
positioning errors. As also seen in Figure 3, the ellipsoidal-
based method lacks large position errors, with the largest er-
ror being notably less than dy,.y. Clearly, the technique al-
lows for a very accurate positioning, without an increase of
the computational complexity of the positioning algorithm.
Finally, the combined approach is seen to be worse than the
ellipsoidal-based method, which is mainly due to the occur-
rence of positioning errors as large as dpayx, resulting from
the Gaussian kernel weights.

4. CONCLUSIONS

In this paper, we have introduced an indoor positioning algo-
rithm based on the notion of separating ellipsoids, exploiting
the map information of the current location to reduce the num-
ber of possible transitions. The resulting algorithm adapts the
ellipsoidal separation algorithm presented by Xiao and Deng
for vowel recognition for the problem of indoor positioning,
while allowing for a reduced dimensionality of required mini-
mization problem using a basic positioning algorithm to form
an initial positioning. The algorithm is shown to yield notably
lower mean and maximum positioning errors as compared to
the commonly used Gaussian kernel approach when evaluated
on data measured in a large shopping mall.
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