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ABSTRACT
The aim of nuclear spectroscopy is to provide as many infor-
mation as possible regarding the activity and the content of
an unknown radioactive source. Due to some random pertur-
bations called pileup phenomenon, electrical pulses recorded
by the spectrometric apparatus may overlap. Recent develop-
ments in compressive sensing and sparse signal reconstruc-
tion allow us to build efficient algorithms for the estimation
of the activity. We suggest in this paper an iterative algorithm
which improves this estimation. This algorithm is based on
successive sparse approximations of the residual signal with
a slowly decreasing sparsity parameter, so that at each step
pulses with smaller amplitude are detected. The algorithm
is detailed and its performances compared to other methods
based on sparse reconstruction. Results show that the pro-
posed approach perform better than the state-of-the-art meth-
ods, and emphasize the usefulness of the iterative scheme.

Index Terms— Sparse reconstruction, nuclear spec-
troscopy, counting rate estimation, LASSO

1. INTRODUCTION

In nuclear spectrometry experiments, particles interact with
a detector at random times, creating electrical pulses which
are afterwards analyzed [1]. The practitioner is usually in-
terested in measuring the activity of radioactive sources and
identifying them. However, when the activity of the radioac-
tive source is high, generated pulses may overlap. This phe-
nomenon is known in the literature as pileup effect. An ex-
ample of real signal with pileups is displayed in Figure 1.

The pileup phenomenon motivates the search for algo-
rithms which allow to separate clusters of electrical pulses for
a better identification activity estimation[2]. However, most
methods are not fitted to high counting rates, since they do
not rely on any shape information of the time signal. When
taking into account the typical shape of individual pulses, the
problem of pileup correction can be viewed as a sparse re-
gression problem. In the recent years [3], representation of
sparse signals has received a considerable attention, and sig-
nificant advances have been made both from the theoretical

Fig. 1. Example of spectrometric signal from an High Pu-
rity Germanium (HPGe) detector (arbitrary units). The parts
displayed in red are pileups.

and applied point of view. More recently, previous contri-
butions suggested post-processed version of the LASSO [4]
in order to estimate the activity of the source, both in ho-
mogeneous [5] and inhomogeneous [6] cases. These post-
processing steps are used to compensate the incompleteness
of the dictionary used, and usually provide very good results
close to the optimum. However, it is observed in practice
that these methods may be inefficient for very high counting
rates. It is therefore necessary to improve the sparse estima-
tion of the signal, whether by adapting the dictionary to the
data at hand [7, 8] or by means of iterated sparse reconstruc-
tions [9]. We present in this contribution an iterative adapta-
tion of the algorithm described in [5]. The main advantage of
the proposed approach is that it does not depend on any ad hoc
threshold, and is therefore suitable for higher counting rates.
The paper is organized as follows: we recall in section 2 the
model used and describe how to estimate the activity of the
source in an homogeneous setting, and present the iterative
algorithm to adapt the sparsity parameter in order to obtain a
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better estimation of the activity. Results are presented in Sec-
tion 3, showing that the proposed approach outperforms the
previous counting rates estimation techniques in the field.

2. ITERATIVE SPARSE REGRESSION FOR
COUNTING RATE ESTIMATION

2.1. Problem formulation

We observe a spectroscopic signal on a finite time interval
stemming from particles impinging on a detector, and assume
that the signal is sampled on T ∆

= {ti, 1 ≤ i ≤ N}. This
signal is modeled classically by a generalized sampled shot
noise process [10]:

yi =
M∑

n=1

Enhn(ti − Tn) + εi, 1 ≤ i ≤ N , (1)

where {Tn, 1 ≤ n ≤ M} are the observed points of the
sample path and represent the arrival times of the particles,
{En, 1 ≤ n ≤ M} their energies and {hn, 1 ≤ n ≤ M} the
associated pulses shapes. A physically plausible assumption
is that the {Tn, 1 ≤ n ≤ M} defines a sample path of an ho-
mogeneous Poisson process with unknown counting rate λ.
The signal contains additional Gaussian noise εi with vari-
ance σ2. We furthermore assume that the pulse shapes hn are
causal and normalized, that is hn(t) = 0 for all t < 0 and in-
tegrates to 1. In this paper we aim to estimate λ given the sole
signal y ∆

= [y1 · · · yN ]T . The standard Maximum Likelihood
estimate of λ is

λ̂opt =
M

TM
, (2)

however M and TM are unknown in practice. In [5] a method
was proposed which is based on sparse linear regression and
estimate the arrival times Tn and their number M ; it was also
proved to reach much better results than traditional threshold-
ing techniques, especially in high intensity regimes. We recall
here the detail of this approach.

On HPGe detectors used for example in Gamma spec-
trometry, an electrical pulse created by a single photon has a
characteristic shape created by the charge collection and mi-
gration in the detector. In this framework, it is assumed that
the hn’s belong to a parametric family of gamma functions

Γθ(t) = cθ tθ1 · e−θ2 t 1(t ≥ 0) ; (3)

where the parameters θ = (θ1, θ2) belong to a discrete sub-
set of R2

+ of cardinal p, and cθ is a normalizing constant.
Equation (1) can be related to a sparse regression problem as
follows. For each j < N we define a time block Aj whose
columns are the shapes (3) sampled and translated at tj :

Aj
∆
=




Γθ1(t1 − tj) · · · Γθp(t1 − tj)

...
...

...
Γθ1(tN − tj) · · · Γθp(tN − tj)



 ;

A global dictionary A is then defined as

A = [A1 A2 · · · AN−1] . (4)

In this paper we furthermore normalize A so that the Gram
matrix 1

NATA has ones all along the main diagonal. Should
the Tn belong to T , the model (1) could be expressed
as a standard regression problem y = Aβ + ε , where
ε

∆
= [εT1 εT2 . . . εTN ]T models the random noise, and

β
∆
= [βT

1 βT
2 . . . βT

N ]T is a vector supported in the time
blocks indexed by the Poissonian sequence {Tn, n ≥ 0},
thus making it a sparse regressor. Note that in the latter εj
and βj are vectors of size p.

In a realistic setting Tn does not belongs to T , and the ac-
tual pulse shapes are only close to the positive span of (3) in
the %2 sense. A sparse regressor β̂ can still be computed from
y,A by means of LASSO [4], basis pursuit [3] and so forth;
provided the sampling rate is small enough, the time support
provided by such a regressor is expected to share similarities
with the true beginnings of pulses. In [5], the algorithm for
counting rate estimation is mostly based on a LASSO regres-
sor β̂ obtained as follows:

β̂(r)
∆
= arg min

β

{
‖y −Aβ‖2 + r |β|1

}
, (5)

where r is a parameter which controls the sparsity of β̂. In or-
der to compensate false time detection, we needed to thresh-
old active blocks giving small contribution and merge con-
secutive active blocks into one single event. This method per-
forms much better than state of the art algorithms. One main
drawback is that close arrival times can be merged into one
single event, and that it requires ad hoc thresholding of active
time blocks. In case of very high activities, clusters of active
blocks can hide distinct events, thus yielding an underestima-
tion of λ. We seek here for a better estimate, and we show that
an improvement can be obtained by iteratively decreasing the
sparsity parameter in the LASSO, in other words by checking
the ”history” provided by the LARS algorithm [11], as now
explained.

2.2. Iterative sparse regression for intensity estimation

We consider a sampled signal y and a dictionary A built as
previously. The LARS algorithm introduced in [11] provides
an iterative method to compute the solution β̂(r) in (5) for a
given r. Based on the constraints imposed by the KKT con-
ditions of (5), it builds a continuous path β̂(s) from s = ∞ to
s = r. Whenever s crosses critical values {sk}k≥0, new vari-
ables are added or withdrawn to the support of β̂(s), that is the
set of its non-zero coefficients. Inside each interval (sk+1, sk)
this support does not vary and the coefficient values vary lin-
early with the parameter r. The counting rate estimator sug-
gested in this paper is based on the same principle. It differs
from the LARS in two aspects: at each stage, we also update a
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set of active arrival times, and we keep track of all the history
of these sets to build estimates of M and TM . The proposed
algorithm is summarized in Algorithm 1, and is detailed in
the next paragraph.

Input :
y: input signal;
A: dictionary built in (4);
{rn}0≤n≤nmax : a decreasing sequence of positive
sparstiy parameters.
Output: λ̂ estimator of the counting rate λ.

Initialize T = ∅ ;
for j = 0, · · · , nmax do

Compute β̂(rj) the solution of (5) ;
Select the active blocks
J (rj) =

{
i ;

∑

βk∈β̂i(rj)

βk > 0
}

;

Decompose J (rj) into a union of consecutive
active blocks:

J (rj) =
s⋃

k=1

{ik, ik + 1, · · · , ik + lk}, ;

Update the set of estimated arrival times:
T ← T ∪ {i1, · · · , is} ;

end
Compute the plug-in counting rate estimate:

λ̂ =
|T|

maxT
.

Algorithm 1: Counting rate estimation by iterative
LASSO

Define a decreasing sequence {rn}0≤n≤nmax of positive
sparsity parameters in order to solve (5). This corresponds
to reconstruct the same signal y with decreasing %1 penaliza-
tions. We build iteratively the set of estimated arrival times
T as follows: at step n, the LASSO regressor (5) β̂(rn) is
computed. Then we choose the time blocks indexed by each
i ≤ N such that the sum of the coefficients of β̂i(rn) is posi-
tive; in other words we select the time-blocks pattern

J (rn) =
{
i ;

∑

βk∈β̂i(rn)

βk > 0
}
. (6)

Note, however, that consecutive active time blocks in (6)
likely correspond to the same electrical pulse, since the signal
is not created from A in the strict sense and since the irrepre-
sentability condition does not hold [12]: indeed consecutive
time blocks are usually highly correlated. Therefore we de-
compose (6) into a disjoint union of clusters of consecutive
active times blocks

J (rn) =
s⋃

k=1

{ik, ik + 1, · · · , ik + lk} , (7)

where for all k = 1 . . . s: ik ≤ ik + lk < ik+1 and is+1 = N .
The set T is then updated by including {i1, · · · , is}. It is
noteworthy that the size of T can only grow as iterations are
performed. By doing so, we keep track of possible clusters
of active time blocks which merged into a single cluster as rj
decreased, and attenuate the underestimation of λ.

Eventually, the counting rate is estimated by plugging the
number of elements in T (denoted by |T|) and its maximum
value in (2), namely

λ̂
∆
=

|T|
maxT

. (8)

The performances of the proposed approach are strongly
related to the choice of the sequence {rn}0≤n≤nmax . Intu-
itively, this sequence should decrease slowly enough in order
to catch all the changes in (7) one after the other and to detect
all disjoint intervals where the LASSO pattern stays constant.
The initial value r0 must be taken so that only one time block
is active. From [11], a sensible choice is to set

r0 =

∥∥∥∥
1

N
ATy

∥∥∥∥
∞

,

and setting rnmax = σ prevents to overfit the input signal.
We emphasize that the choice of {rn}0≤n is not unique. A
practical setting criterion is that rn − rn+1 should be smaller
than the minimum distance between two consecutive critical
values in the LARS iterations. An optimal (in the sense of
computational cost) sequence so that the latter criterion de-
pends on A as well as on the type of signals y we have to
analyze, and finding the optimum is beyond the scope of the
present paper.

There are two main differences between the approach pre-
sented in this paper and the one in [5]: in the latter, a sin-
gle sparsity parameter r is chosen from the very beginning,
whereas we keep trace here of all beginnings of clusters cre-
ated in the process; moreover the only threshold we apply is
on the correlation rj (which stays above known σ to prevent
overfitting), whereas time blocks are not thresholded by some
ad hoc method as before. These advantages make the pro-
posed method more suitable for the practitioner.

3. RESULTS AND DISCUSSION

We present in this section the performances of the proposed
adaptation procedure on simulations similar to [5].

3.1. Experimental settings

We investigate several values of λ ranging from 0.1 to 0.4,
while the sampling rate stays equal to 1. Compared to real-life
experiments this corresponds to counting rates from 1.106 to
4.106 photons per second with a digital apparatus with sam-
pling rate 10 MHz. For each intensity value, we draw 104

signals. Pulse shapes are created by drawing randomly two
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(a) λ = 0.1.
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(b) λ = 0.2.
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(c) λ = 0.3.
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(d) λ = 0.4.

Fig. 2. Boxplots of the counting rates estimates, optimal (left), oracle (middle) and I-LASSO (right). We observe that even in
the case of very high activity, the obtained values remain close to the oracle

parameters θ1, θ2 inside [0; 2]. The energies En are drawn ac-
cordingly to a truncated Gaussian density with mean 20 and
variance 9. We assume a good Signal Noise Ratio (SNR)
(σ = 0.1), which is the case for HPGe detectors. We com-
pare the estimations of λ obtained by the proposed estimate
(8) (denoted by I-LASSO) with the optimal estimate (2) and
with the best estimate attainable with sampled data, denoted
by Oracle, and defined as

λoracle =
M ′

max1≤n≤M)Tn*
,

where )x* is the integer part of x and M ′ is the number of
distinct values of )Tn*, n = 1 . . .M . In our simulations we
chose an arithmetically decreasing sequence, that is we de-
fined a small parameter ρ > 0 and set rj = r0 − jρ for all
j > 0, as long as rj remains greater than σ.

3.2. Commented results

Boxplots illustrating the obtained results are displayed in Fig-
ure 2. When compared to the results of [5], we observe that
I-LASSO provides slightly better biases and variances, espe-
cially for high counting rates where we actually detect more
pulses.

Since there are relatively high correlations between vari-
ables belonging to close time blocks LASSO is bound to es-
timate some single pulses by using consecutive time blocks,
even for high parameter values. Note that running LASSO
once with an inappropriate r increases the risk of misdetec-
tion, because the pulses could not be well ”separated” by the
correlation level fixed by r. This justifies the use of an itera-
tive approach.

Secondly, as r decreases blocks whose purpose is to im-
prove the signal estimation can be activated, whereas they do
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not indicate actual beginnings of pulses. They tend to further
merge together clusters of important time blocks (which have
higher coefficients). However, since these lasts were sepa-
rated when r was higher, we avoid misdetections.

Note that we considered a time block as active if the sum
of its coefficients are positive: indeed it may happen that
blocks contain negative coefficients, and among them some
could not be related to a pulse start; simulations showed that
selecting all time block containing one active variable at least
usually leads to underperformances. Another way could be
to select variables having only positive correlation with the
residual.

4. CONCLUSION

In the particular problem of sparse regression for counting
rate estimation, we defined a simple iterative procedure ex-
ploiting all the model selections obtainable by LASSO pro-
gression. This method makes no use of any thresholding step,
and performs quite well for intensities range of real practi-
cal interest. In future works we aim to use this procedure to
address other problems involving pulses separations, for in-
stance estimating the energy spectrum of the signal.
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