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ABSTRACT

Reconstruction of sparse signals from reduced dimensions

requires the solution of an l0 norm minimization, which

is unpractical. A number of algorithms have appeared in

literature, including ℓ1 minimization, greedy pursuit algo-

rithms, Bayesian methods and nonconvex optimization. This

manuscript introduces a greedy approach, called the Forward-

Backward Pursuit (FBP), which iteratively enlarges the sup-

port by consecutive forward and backward steps. At each

iteration, the forward step first expands the support, while the

following backward step prunes it. The number of atoms se-

lected by the forward step is selected higher than the number

of removals, hence the support is expanded at the end of each

iteration. The recovery performance of the proposed method

is demonstrated via simulations including different nonzero

coefficient distributions in noisy and noise-free scenarios.

Index Terms— Compressed sensing, forward-backward

search, sparse signal reconstruction, greedy algorithms

1. INTRODUCTION

The fundamental problem of Compressed sensing (CS) is the

reconstruction of the sparse signals from reduced sets of ob-

servations. Let x be a K-sparse signal of length N and Φ the

M×N observation matrix where M < N . We are interested

in recovering x back from the observation

y = Φx. (1)

The dimensionality reduction via Φ makes the analytical so-

lution of (1) ill-posed. Hence, the recovery problem is refor-

mulated as an l0 norm minimization due to sparsity:

x = argmin ‖x‖0 s.t. y = Φx. (2)

As direct solution of (2) is computationally intractable, a

number of alternative solutions have emerged. An overview

of major algorithmic classes can be found in [1].

Among CS reconstruction methods, convex relaxation [2,

3, 4, 5, 6] replaces the l0 minimization in (2) with l1 mini-

mization, making the solution tractable via convex optimiza-

tion algorithms such as linear programming, as proposed by

Basis Pursuit (BP) [6]. Greedy pursuit algorithms, such as

Matching Pursuit (MP) [7], Orthogonal MP (OMP) [8], Com-

pressive Sampling MP (CoSaMP) [9], Subspace Pursuit (SP)

[10] and Iterative Hard Thresholding (IHT) [11, 12], employ

iterative mechanisms. Among these, MP and OMP build up

the support of x iteratively, adding one element per iteration.

SP and CoSaMP, on the other hand, apply a two-stage iter-

ative scheme, which at each iteration first expands and then

shrinks the support by the same number of elements, keeping

the support size fixed between iterations. [13] provides an al-

gorithmic framework called Two-Stage Thresholding (TST),

into which algorithms such as SP and CoSaMP fall.

In this paper, we propose a two-stage iterative greedy

algorithm, which we call Forward-Backward Pursuit (FBP).

FBP possesses forward selection and backward removal steps

which iteratively expand and shrink the support estimate of

x. Selecting the forward step size higher than the backward

step size, the support is iteratively expanded. FBP has some

advantages over both SP and OMP. Unlike SP, FBP does not

require the a priori estimate of the sparsity, K, which is not

easy to provide in practice. On the other hand, the backward

step allows FBP to remove some possibly misplaced atoms

from the estimate of the support, which is a clear advantage

over OMP. Similar to SP and CoSaMP, FBP is also a member

of TST-type schemes, while the idea of expanding the support

is investigated for the first time in this concept. Moreover,

our results show that FBP can perform better than SP in some

scenarios, which indicates that SP is not overall the best TST

scheme as proposed in [13].

An adaptive forward-backward greedy algorithm, FoBa

has been investigated in [14] for the sparse learning problem.

This algorithm consists of forward and backward steps with

fixed size 1. Additionally, it includes an adaptive criterion for

deciding whether or not to take the backward step. FBP, on

the other hand, does take forward and backward steps with

sizes greater than 1. This allows FBP to terminate in less

iterations. In addition, FBP includes no adaptive criterion for

taking the backward step (Note that this is not trivial when the

backward step size is greater than 1.). Finally, FoBa has been

applied for the sparse learning problem, while we propose and

evaluate FBP for CS signal recovery.

This work is organized as follows: First, we give a brief

description of OMP and SP algorithms. The FBP algorithm

is introduced in Section 3. The reconstruction performance
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of FBP is demonstrated in Section 4 in comparison to BP, SP

and OMP algorithms. We conclude with a brief summary.

2. GREEDY PURSUITS

In this section we summarize two greedy algorithms, OMP

and SP, regarding their similarities with the FBP algorithm.

Beforehand, we define the notation that is used throughout the

paper: Let S(k) be the estimated support of x after the k’th

iteration, while S̃(k) stands for the expanded support after the

forward selection step of the k’th iteration. ỹ(k) denotes the

approximation of y after the k’th iteration. r(k) is the residue

of y after the k’th iteration. ΦS denotes the matrix composed

of the columns of Φ indexed by S. Similarly, xS is the vector

consisting of the entries of x with indices in S.

OMP is an iterative algorithm that searches for the support

of x by identifying one element per iteration. It starts with

S(0) = ∅ and r(0) = y. At the iteration k, OMP expands

the estimated support of the last iteration, S(k−1), with the

index of the dictionary atom closest to r(k−1) (i.e. index of

the largest magnitude entry of ΦTr(k−1)). Following, ỹ(k)

is computed via orthogonal projection of y onto ΦS(k) and

the residue is updated as r(k) = y − ỹ(k). The iterations are

carried out until the termination criterion is met. In this work,

we stop OMP when ‖r(k)‖2 falls below the threshold ε‖y‖2.

SP and CoSaMP combine selection of multiple columns

per iteration with a pruning step, maintaining K element sup-

port sets throughout the iterations. At iteration k, SP first

expands the selected support with indices of the K largest

magnitude entries of ΦTr(k−1)), obtaining an extended sup-

port S̃(k) of size 2K (Alternatively, CoSaMP expands the

support by 2K elements.). In the second step, the orthog-

onal projection coefficients of y onto ΦS̃(k) are computed,

and the estimated support S(k) is obtained by pruning S̃(k) to

contain only the indices of the K largest magnitude projec-

tion coefficients. r(k) is finally computed using the approx-

imation ỹ(k) which is obtained by orthogonal projection of

y onto ΦS(k) . The iterations are stopped when ‖r(k)‖2 ≥
‖r(k−1)‖2. Once stopped at iteration l, the final estimate of

the support is S(l−1), while orthogonal projection of y onto

ΦS(l−1) yields the corresponding nonzero values. CoSaMP

and SP are provided with Restricted Isometry Property (RIP)

[2, 15, 16] based theoretical guarantees, showing that these

two-stage schemes reduce the reconstruction error iteratively

when some certain RIP conditions are met.

3. FORWARD-BACKWARD PURSUIT

OMP and other MP variants are forward greedy algorithms,

where each iteration consists of a single forward step that

expands the support estimate S(k). Whilst this mechanism

builds up S(k) iteratively, any element that is inserted into

S(k) stays there till termination of the algorithm. In case an

incorrect element is chosen, there is no chance to remove it

from the support, which may cause the recovery to fail. To

illustrate, consider a well-known example: Let x be the sum-

mation of two equal magnitude sinusoids with very close fre-

quencies, f1 and f2, and Φ be an overcomplete sinusoidal

dictionary, containing atoms with frequencies f1, f2 and f3 =
(f1+f2)/2 among others. OMP will first select the compo-

nent with frequency f3. Then, during the next iterations, the

algorithm will try to cover for this error, choosing components

other than the two correct ones, and will finally fail.

Each iteration of SP and CoSaMP, on the other hand, em-

ploys two stages, which iteratively expand and shrink the sup-

port, allowing both addition and removal of nonzero indices

to the support estimate. These algorithms require the sparsity

level K a priori, as the support size is fixed. This is an impor-

tant handicap in most practical cases, where K is unknown

or it is not desired to fix it. It is possible to choose K very

large, however in that case the nice theoretical guarantees of

CoSaMP and SP are nearly lost, as the probability of satisfy-

ing the required RIP condition decreases with increasing K.

The Forward-Backward Pursuit algorithm provides an it-

erative forward-backward scheme that both allows removal

of misidentified atoms from the support estimate and requires

no a priori knowledge of K. The scheme can be outlined as

follows: The support estimate is initialized as an empty set:

S(0) = ∅, and the residue as r(0) = y. At iteration k, first

the forward step expands S(k−1) by indices of α largest mag-

nitude elements in ΦTr(k−1). This builds up the extended

support S̃(k). Then the projection coefficients are computed

by orthogonal projection of y onto ΦS̃(k) . The backward step

prunes S̃(k) by removing the indices of β smallest magnitude

projection coefficients, which produces the support estimate

S(k). Following, ỹ(k) is computed via orthogonal projection

of y onto ΦS(k) and the residue is updated as r(k) = y−ỹ(k).

The iterations are carried on until either ‖r(k)‖2 falls below

the threshold ε‖y‖2. To avoid the algorithm running for too

many iterations in case of a failure, the maximum number of

iterations is set as Kmax. After termination at iteration l, S(l)

gives the nonzero indices of the estimate x̃, and the corre-

sponding nonzero elements are the projection coefficients of

y onto S(l). The pseudo-code of FBP is given in algorithm 1.

Unlike SP, FBP does not require an a priori estimate of

the sparsity level K. Selecting the forward step size α greater

than the backward step size β, FBP builds up support estimate

by α− β atoms per iteration. With this choice, the backward

pruning step does not require K a priori. In addition, the

termination criterion of FBP does not also require the a pri-

ori estimate of K as the termination is based on the residual

power. The pay-off for this, however, is that the nice theo-

retical guarantees cannot be provided in a way similar to SP

or CoSaMP, which make use of the support size being fixed

as K after the backward step. For the time being, we cannot

provide a complete theoretical analysis of FBP, and leave this

as a future work. Note that, however, most of the theoretical
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Algorithm 1 FORWARD-BACKWARD PURSUIT

Input: Φ, y

Define: α, β, Kmax, ε
Initialize: S(0) = ∅, r(0) = y

k = 0
while true do

k = k + 1
Tf = {indices corresponding to α largest magnitude

elements in ΦTr(k−1)}
S̃(k) = S(k−1) ∪ Tf

w̃ = argmin
z

‖y −ΦS̃(k)z‖

Tb = {indices corresponding to β smallest magnitude

elements in w̃}
S(k) = S̃(k) \ Tb

w = argmin
z

‖y −ΦS(k)z‖

r(k) = y −ΦS(k)w

if ‖r(k)‖2 ≤ ε‖y‖2 or |S(k)| ≥ Kmax then

break

end if

end while

x̃S(k) = w

x̃{1,2,...,N}\S(k) = 0
return x̃

analysis steps of SP or CoSaMP also hold for FBP.

As a clear advantage over OMP, the backward step of FBP

gives the algorithm the ability to remove atoms from the sup-

port. Let’s once again consider the example with sinusoids.

Assume we run FBP with α = 3 and β = 1. During the

forward step of the first iteration, FBP will select the three

components with frequencies f1, f2 and f3. Following or-

thogonal projection, the backward step will eliminate f3, and

the recovery will be successful after the first iteration.

4. EXPERIMENTAL EVALUATION

In this section, reconstruction performance of FBP is demon-

strated in comparison to BP, SP and OMP. The experiments

cover both noise-free and noisy scenarios where reconstruc-

tion performance and run times are compared. Each test is re-

peated over 500 randomly generated samples of length N =
256. Nonzero entries of the test samples are modeled as iid

random variables either from standard Gaussian distribution

or uniform distribution in [−1, 1]. We refer to these as Gaus-

sian or uniform sparse signals. M = 100 observations were

taken from each vector. For each vector, a different observa-

tion matrix is drawn from Gaussian distribution with mean 0
and standard deviation 1/N . ε is set to 9×10−7 in the noise-

less case, while it is selected with respect to the noise level

in noisy scenarios. Kmax is selected as 55. Note that, in this

work, ε and Kmax are also valid for OMP, that is, OMP is run

until ‖r‖2 ≤ ε‖y‖2, with a maximum of Kmax iterations al-

lowed. For the noiseless cases, the results are stated in terms

of the average normalized mean-squared-error (ANMSE) and

exact reconstruction rates. ANMSE is defined as

ANMSE =
1

500

500∑

i=1

‖xi − x̂i‖
2
2

‖xi‖22
(3)

where x̂i is the recovery of the i’th test vector xi. For noisy

observations, we state the ANMSE in the decibel (dB) scale,

calling it the distortion ratio.

Figure 1 depicts the reconstruction performance for Gaus-

sian sparse vectors. A range of α values are employed for

FBP, where β = α−1, expanding the support by one element

per iteration. In general, FBP provides better recovery than

the others, and its performance is improved with α. FBP out-

performs the other algorithms in exact reconstruction rates.

BP, SP and OMP start to fail at around K = 25, while for

α ≥ 20, the FBP failures begin only when K > 30. As for the

ANMSE, FBP is the best performer when α ≥ 20. With this

setting, BP can beat FBP only when K = 45. In this example,

we also observe that OMP performs better than SP. This is due

to the chosen termination criterion, ‖r‖2 ≤ ε‖y‖2, which im-

proves OMP performance over the conventional scheme that

runs for exactly K iterations (see [17] for a discussion of the

two termination criteria.)

To investigate the performance of FBP with respect to β,

we repeat the Gaussian sparse reconstruction experiment us-

ing different β values for α = 20. Figure 2 illustrates the

reconstruction results for this case. We observe that the ex-

act reconstruction rates are improved when β is increased.

On the other hand, the choice of β does not significantly af-

fect the reconstruction error. This indicates that for smaller β
values, failures start occurring at smaller magnitude nonzero

elements, which do not significantly change the error. The

results indicate that FBP is the best performer when β > 15,

where it provides higher exact reconstruction rates than the

others. As for the previous example, BP can produce lower

ANMSE only for K = 45.

Figure 3 compares the speed of the FBP, SP and OMP.

Here, BP is excluded as its run time is incomparably higher.

Expectedly, increasing α while β = α − 1 slows down FBP,

following the increase in the dimensions of the orthogonal

projection step. On the other hand, increasing α−β decreases

the number of necessary iterations and FBP terminates faster.

Most important, when α = 20 and β ≤ α − 2, the run time

of FBP, SP and OMP are very close. In case α = 20 and

β = 17, the speed of FBP and OMP are almost the same,

while the reconstruction performance of FBP is significantly

better than the other algorithms involved.

Next, we simulate recovery of uniform sparse signals.

The results are shown in Figure 4 for α in [2, 30] and

β = α − 1. We observe that FBP yields higher exact re-

construction rates than the other algorithms. In case α ≥ 20,

FBP failures begin when K > 30, while the other algorithms

start to fail at around K = 25. On the other hand, convex
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relaxation introduces less ANMSE than the greedy competi-

tors, especially for K > 30. ANMSE of FBP and SP are

close, with FBP being slightly better when α ≥ 20.

Finally, we simulate recovery from inaccurate observa-

tions, where observed vectors are contaminated with white

 

 

 

 

A
N

M
S

E

E
x
ac

t
R

ec
o
n
st

ru
ct

io
n

R
at

e

OMP

OMP

SP

SP

BP

BP

KK

FBP, α=2

FBP, α=2

FBP, α=10

FBP, α=10

FBP, α=20

FBP, α=20

FBP, α=30

FBP, α=30

00
1010 2020 2525 3030 3535 4040 4545

0.1

0.2
0.2

0.3

0.4

0.4

0.5

0.6

0.6

0.7

0.8

0.8

1

Fig. 4. Reconstruction results over sparsity for uniform sparse

signals. For FBP, β = α− 1.

−45

−40

−35

−30

−25

−20

−15

−10

−5

 

 

−45

−40

−35

−30

−25

−20

−15

−10

−5

 

 

SNR (dB)SNR (dB)

Gaussian Sparse Signals Uniform Sparse Signals

D
is

to
rt

io
n

R
at

io
(d

B
)

D
is

to
rt

io
n

R
at

io
(d

B
)

OMPOMP

SPSP

BPBP

FBPFBP

00

55 1010 1515 2020 2525 3030 3535 4040

Fig. 5. Average recovery distortion over SNR in case of noise

contaminated observations. For FBP, α = 20 and β = 17.

 

 

 

 

A
v
er

ag
e

R
u
n

T
im

e
(m

s)

A
v
er

ag
e

R
u
n

T
im

e
(m

s)

SNR (dB)SNR (dB)

Gaussian Sparse Signals Uniform Sparse Signals

OMP OMP
SP SP
FBP FBP

00

5

5

5

5

10

10

10

10 1515 2020 2525 3030 3535 4040

2.52.5

7.57.5

Fig. 6. Average run time per test sample in case of noise

contaminated observations. For FBP, α = 20 and β = 17.

Gaussian noise at signal-to-noise ratios (SNR) varying from

5 to 40 dB. FBP is run with α = 20 and β = 17, as we

have seen above that OMP and FBP require similar run times

for this choice. Figure 5 shows the recovery results for noisy

Gaussian and uniform sparse signals, while the run times are
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compared in Figure 6. Clearly, FBP yields the most accurate

recovery in both cases, while BP can do slightly better than

FBP only when SNR is 5 dB. The run times reveal that FBP

is not only the most accurate algorithm, but is also as fast as

OMP with α = 20 and β = 17. Note that, increasing β be-

yond 17 would improve FBP recovery, while the algorithm

would require a longer run time than OMP.

Recovery of binary nonzero signals are also of interest for

us. We skip the details because of space limitations, however,

we observed that SP generally performs better than FBP in

binary examples, while BP yiels the best recovery.

Finally, our findings may appear contradictory to [13],

however they are not. First, we run OMP until ‖r‖2 ≤ ε‖y‖2,

by which OMP performance is significantly improved over

going exactly for K iterations as in [13]. Second, we run the

simulations for different nonzero element distributions than

in [13]. We acknowledge that SP performs better than FBP

in the binary scenario, which is in parallel to the findings of

[13], where SP is named as the optimum TST scheme for this

case. In combination, our results indicate that FBP provides

better recovery than SP and BP in some distributions where

the magnitudes of nonzero elements are not close. For com-

parable magnitudes, SP seems to be the optimal TST scheme,

and BP the best performer. These findings do not contradict

with that of [13].

5. SUMMARY

This work proposes a forward-backward scheme for CS re-

covery of sparse signals. This two-stage scheme iteratively

expands the support estimate for the sparse signal, without re-

quiring K a priori. Over traditional MP type algorithms, FBP

provides a backward step for removing possibly misidenti-

fied atoms from the solution at each iteration. Simulations

show that FBP improves the reconstruction for Gaussian and

uniform distributions of nonzero elements in both noisy and

noise-free scenarios, in run times close to that of OMP.
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