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ABSTRACT

This paper considers jointly optimized rate adaptation and

beamforming (JRAB) to achieve maximum weighted sum-

rate in a multiuser downlink network. In our approach the

rate adaptation consists in assigning modulation and cod-

ing schemes (MCSs) for the users which are modeled by

multiple-choice constraints. The challenge of the problem

lies in its combinatorial nature of the MCS selection process.

We address the JRAB problem within the mixed integer sec-

ond order cone programming (MI-SOCP) framework. We

propose a convenient MI-SOCP reformulation that is specif-

ically suitable to reduce the run-time in branch-and-bound

(BB) methods. Further, a preprocessing step and a novel

branching prioritizing principle (BPP) are introduced to speed

up the BB type solutions. To facilitate applications in large

systems, a fast heuristic algorithm is developed. We show

via simulations that the improved MI-SOCP formulation and

the BPP can significantly reduce the run-time for solving the

JRAB problem with BB. Numeric results also show that the

heuristic algorithm yields weighted sum-rates that are larger

than that computed by the state-of-the-art MI-SOCP solver

IBM ILOG CPLEX under the given run-time limitations.

Index Terms— Dynamic rate adaptation, Adaptive mod-

ulation and coding, Multiuser downlink beamforming, Joint

optimization, Mixed integer conic programming

1. INTRODUCTION

Dynamic rate adaptation in the form of adaptive modulation

and coding (AMC), which matches MCSs to channel con-

ditions, has long been identified as an effective mean to im-

prove bit-error-rate and throughput performance of wireless

systems. AMC has been extensively studied in the literature

(see, e.g., [1, 2, 3] and references therein) and has made its

way into wireless standards (e.g., 3GPP LTE [4, Chap. 5]).

Advanced smart antenna technology is considered as an-

other key enabler of future wireless systems. With multiple

antennas at the basestation (BS), multiuser downlink beam-

forming can be employed to multiplex data transmissions to
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mobile users (MUs) in space, which improves dramatically

the spectral efficiency of cellular networks. This technology

has also been intensively investigated in the wireless research

community (see, e.g., [5, 6, 7] and references therein) and has

recently been adopted in wireless standards [4, Chap. 5].

In this paper we consider the problem of joint rate adapta-

tion and multiuser downlink beamforming (JRAB), in which

optimal data rates are assigned to mobile users (MUs) based

on the channel and interference conditions of all MUs to

maximize the weighted sum-rate of the downlink system. As

the data rates associated with specific MCSs are discrete and

the MUs, which are jointly served with beamformers, are

coupled by cochannel interference (CCI), the JRAB problem

involves mixed integer nonlinear optimization. In the JRAB

problem, a MU may be allocated a zero data rate meaning

that the MU is not scheduled. However, if a MU is assigned

a non-zero data rate, a corresponding minimum received

SINR level is required [1, 2]. As a result, the JRAB problem

that we address implicitly includes joint user scheduling and

beamforming [5], and joint admission control and beamform-

ing [6], as well as joint MCS selection and power control [3].

We address the JRAB problem using a MI-SOCP ap-

proach. With the MCS selection and beamforming modeled

respectively as multiple-choice constraints and second or-

der cone constraints, the JRAB problem is formulated as a

MI-SOCP. The branch-and-bound (BB) methods, which are

widely adopted for solving MI-SOCPs [8], yield optimal

solutions in reasonable run-time only for small-scale con-

figurations of the JRAB problem. To reduce the run-time

required for solving the JRAB problem with BB, a signif-

icantly improved MI-SOCP formulation is proposed. In

addition, a preprocessing step and a branching prioritizing

principle (BPP) are introduced to further speed up the BB so-

lutions. Furthermore, a fast heuristic algorithm is developed

for applications in medium to large scale systems to compute

close-to-optimal solutions of the JRAB problem.

The simulations confirm that the improved MI-SOCP for-

mulation and the BPP can significantly reduce the run-time

for solving the JRAB problem with BB. Numeric results also

demonstrate that the fast algorithm yields weighted sum-rates

(WSRs) that are larger than that computed by the solver

CPLEX [8] under the practical run-time limitations.
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2. SYSTEM MODEL

2.1. Multiuser Downlink System

Consider a cellular downlink system comprising one BS that

is equipped with M > 1 transmit antennas, and K > 1
single-antenna MUs, as illustrated in Fig. 1.

{ }MCS MCS MCS
kk, 1 k, 2 k, L

, , ,�

Fig. 1. Illustration of a multiuser downlink network

Let hk ∈ CM denote the frequency-flat channel vector

between the BS and the kth MU, ∀k ∈ K , {1, 2, · · · ,K}.

We define accordingly wk ∈ CM as the beamformer used at

the BS for transmitting data to the kth MU, ∀k ∈ K. The

received signal yk ∈ C at the kth MU can be written as:

yk = h
H
k wkxk +

K∑

j=1,j 6=k

h
H
k wjxj + zk, ∀k ∈ K, (1)

with xk ∈ C representing the unit-power data symbol, i.e.,

E
{
xkx

H
k

}
= 1, designated for the kth MU, and zk ∈ C

denoting the additive noise at the receiver of the kth MU, with

zero mean and variance σ2
k , ∀k ∈ K.

Similar to [5, 6, 7], it is assumed that the data symbols for

different MUs are mutually statistically independent and also

independent from the receiver noise. It is further assumed

that single user detection is performed at the MUs, i.e., the

CCI is treated as noise at the MUs. The received signal-to-

interference-plus-noise-ratio (SINR) at the kth MU, denoted

by SINRk, is then given by [5, 6, 7]:

SINRk =
w

H
k hkh

H
k wk∑K

j=1,j 6=k w
H
j hkh

H
k wj + σ2

k

, ∀k ∈ K. (2)

2.2. Dynamic Rate Adaptation

In modern cellular communication systems like LTE, with dy-

namic rate adaptation in the form of AMC, the data rate of a

MU, in bits-per-symbol or bits-per-channel-use (bpcu), takes

discrete values determined by specific MCSs assigned to the

MU, see Tab. 1 [4, Chap. 5]. Corresponding to each MCS

and data rate, a minimum received SINR level is required

to ensure the target block-error-rate (BLER) and/or bit-error-

rate (BER) [1, 2, 3]. While the candidate MCSs and corre-

sponding data rates are defined in the wireless standards [4,

Chap. 5], the associated minimum received SINR require-

ments are equipment and implementation dependent. For in-

stance, typical SINR requirements for different MCSs in LTE

systems are listed in Tab. 1. These SINR values are obtained

from extensive simulations for a target BLER of 10% [1, 2].

In this paper, we consider the scenario that the BS se-

lects one specific MCS out of Lk > 1 candidate MCSs

{MCSk,1,MCSk,2, · · · ,MCSk,Lk
} for the kth MU, ∀k ∈ K.

If no appropriate MCS is selected for the kth MU, it is not

served in the current time interval. To assign the lth candidate

MCS to the kth MU, it is required that [1, 2]:

SINRk ≥ Γk,l, ∀k ∈ K, ∀l ∈ Lk, (3)

with the constant Γk,l > 0 (in linear scale) representing the

minimum SINR requirement corresponding to the lth candi-

date MCS of the kth MU, the set Lk , {1, 2, · · · , Lk}, the

cardinality Lk , |Lk|, and SINRk defined in (2).

Throughout this paper, it is assumed that the BS has full

knowledge of the CSI {hk, ∀k ∈ K}, which is a common

assumption made in the literature, see, e.g., [5, 6, 7]. The

BS jointly assigns the MCSs and computes the beamformers

{wk, ∀k ∈ K} for all K MUs.

Table 1. Candidate MCSs, data rates, and minimum received

SINR requirements of LTE systems [1, 2]

Mod. Code Rate Data Rate Rk,l SINR Level

Order (×1024) (bits/symbol) Γ̃k,l (dB)

QPSK 78 0.1523 −9.478
QPSK 120 0.2344 −6.658
QPSK 193 0.3770 −4.098
QPSK 308 0.6010 −1.798
QPSK 449 0.8770 0.399
QPSK 602 1.1758 2.424

16QAM 378 1.4766 4.489
16QAM 490 1.9141 6.367
16QAM 616 2.4063 8.456
64QAM 466 2.7305 10.266
64QAM 567 3.3223 12.218
64QAM 666 3.9023 14.122
64QAM 772 4.5234 15.849
64QAM 873 5.1152 17.786
64QAM 948 5.5547 19.809

3. RATE ADAPTATION AND BEAMFORMING

3.1. Problem Formulation

The problem of interest is to jointly optimize the MCS

assignments and beamformer design of all K MUs with

the objective of maximizing the WSR in bpcu. To model

the assignment of MCSs, we introduce binary variables

{ak,l, ∀k ∈ K, ∀l ∈ Lk} and assume that the variable ak,l
takes the value ak,l = 1 if the kth MU is scheduled to be

served with the lth candidate MCS, and ak,l = 0 otherwise.

The JRAB problem can then be formulated as:
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max
{wk,ak,l}

K∑

k=1

λk

Lk∑

l=1

ak,lRk,l (4a)

s. t. ak,l ∈ {0, 1}, ∀k ∈ K, ∀l ∈ Lk, (4b)

Lk∑

l=1

ak,l ≤ 1, ∀k ∈ K, (4c)

K∑

k=1

‖wk‖
2
2 ≤ P (max), (4d)

SINRk ≥
Lk∑

l=1

ak,lΓk,l, ∀k ∈ K, (4e)

with the constant λk ≥ 0 characterizing the priority weight

of the kth MU, the constant P (max) > 0 denoting the maxi-

mum allowable transmit power (in linear scale) of the BS, and

SINRk defined in (2).

In the JRAB problem formulation (4), the so-called

multiple-choice constraint in (4c) ensures that either the kth

MU is served with one of its Lk MCSs (i.e.,
∑Lk

l=1 ak,l = 1),

or the kth MU is currently not served (i.e.,
∑Lk

l=1 ak,l = 0).

As a result, multiuser scheduling and admission control are

included implicitly in formulation (4). The JRAB problem

in the form of (4) is nonconvex even if the binary variables

{ak,l, ∀k ∈ K, ∀l ∈ Lk} are relaxed to be continuous, i.e., if

constraint (4b) is replaced by 0 ≤ ak,l ≤ 1. We derive in the

next subsection an equivalent MI-SOCP reformulation that

can be efficiently solved, e.g., using BB methods [8].

3.2. An Equivalent MI-SOCP Formulation

Without loss of generality, it is assumed that the data rates

and the corresponding SINR requirements associated with the

MCSs are ordered as:

Rk,1 ≤ Rk,2 ≤ · · · ≤ Rk,Lk
, ∀k ∈ K, (5a)

Γk,1 ≤ Γk,2 ≤ · · · ≤ Γk,Lk
, ∀k ∈ K. (5b)

Substituting eq. (2) into eq. (4e), we obtain the following

equivalent representation of the SINR constraints:




K∑

j=1

w
H
j hkh

H
k wj + σ2

k




Lk∑

l=1

ak,lΓk,l ≤

(
1 +

Lk∑

l=1

ak,lΓk,l

)
w

H
k hkh

H
k wk, ∀k ∈ K. (6)

The constraints in (6) represent the major difficulty in

solving problem (4), as it involves the products of binary

variables {ak,l, ∀k ∈ K, ∀l ∈ Lk} and quadratic terms of

beamformers {wk, ∀k ∈ K}. However, under the constraints

in (4b) and (4c), and with the ordering in (5), it can be proved

by Cauchy-Schwarz inequality that the constraints in (6) are

equivalent to the following more tractable constraints:

K∑

j=1

w
H
j hkh

H
k wj + σ2

k ≤

(
1−

Lk∑

l′=l

ak,l′

)
U2
k +

γ2
k,lw

H
k hkh

H
k wk, ∀k ∈ K, ∀l ∈ Lk, (7)

with the constants Uk > 0 and γk,l ≥ 1 defined as:

Uk ,

√
P (max) ‖hk‖

2
2 + σ2

k, ∀k ∈ K, (8)

γk,l ,
√
1 + 1/Γk,l, ∀k ∈ K, ∀l ∈ Lk. (9)

Further, it is well known that the SINR constraints (7) can

be rewritten as [6, 7]:

Im
{
h
H
k wk

}
= 0, Re

{
h
H
k wk

}
≥ 0, ∀k ∈ K, (10a)

∥∥[hH
k W, σk

]∥∥
2
≤

(
1−

Lk∑

l′=l

ak,l′

)
Uk +

γk,lRe
{
h
H
k wk

}
, ∀k ∈ K, ∀l ∈ Lk, (10b)

with the matrix W , [w1, w2, · · · , wK ] ∈ CM×K .

The constraints in (10b) become second order cone

(SOC) constraints [9, Sec. 4.4.2] when the binary variables

{ak,l, ∀k ∈ K, ∀l ∈ Lk} originally defined on the discrete set

{0,1} are relaxed to be continuous and confined in the closed

interval [0, 1]. We further introduce the auxiliary variables

{ck ≥ 0, ∀k ∈ K} to reformulate the SINR constraints in

(10b) with fewer quadratic constraints. The term c2k models

the received signal power of the kth MU when it is sched-

uled (i.e.,
∑Lk

l=1 ak,l = 1), and it models the upper bound

on the received interference-plus-noise power of the kth MU

when it is not scheduled (i.e.,
∑Lk

l=1 ak,l = 0), ∀k ∈ K. The∑K

k=1 Lk quadratic constraints in (10b) can then be reduced

into K quadratic constraints plus
∑K

k=1 Lk linear constraints

as given in eq. (11) below:
∥∥[hH

k W, σk

]∥∥
2
≤ ck, ∀k ∈ K, (11a)

ck ≤

(
1−

Lk∑

l′=l

ak,l′

)
Uk +

γk,lRe
{
h
H
k wk

}
, ∀k ∈ K, ∀l ∈ Lk. (11b)

We remark that, in contrast to (10b), the SINR constraints

in (11) are favorable for BB implementations as the number of

quadratic constraints in (11) is reduced, resulting in a reduced

computational complexity at each node in the BB methods.

Replacing the SINR constraints in (4e) with their equiv-

alences in (10a) and (11), we obtain the following MI-SOCP

reformulation of the JRAB problem (4):

max
{W, ak,l,ck}

K∑

k=1

λk

Lk∑

l=1

ak,lRk,l (12a)

s. t. (4b), (4c), (4d), (10a), and (11). (12b)
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4. OPTIMAL SOLUTIONS VIA BB METHODS

Small-scale JRAB problems (12) can be solved to global op-

timality with the BB methods in reasonable run-time. The

computational complexity of the BB method depends mainly

on the tightness of the associated continuous relaxation, the

number of binary variables, and the branching priorities of the

binary variables [8]. To reduce the run-time required for solv-

ing the JRAB problem (12) with BB methods, we propose in

this section an improved MI-SOCP reformulation, a prepro-

cessing step, and a branching prioritizing principle (BPP).

Introducing the auxiliary variable tk ≥ 0 to model the

allocated power of the kth MU, ∀k ∈ K, it can readily be

verified that the JRAB problem formulations in (4) and (12)

are equivalent to the following MI-SOCP:

max
{W,ak,l,ck,tk}

K∑

k=1

λk

Lk∑

l=1

ak,lRk,l (13a)

s. t. ‖wk‖
2
2 ≤ tk

Lk∑

l=1

ak,l, (13b)

tk ≥ 0, tk ≤ P (max)
Lk∑

l=1

ak,l, (13c)

K∑

k=1

tk ≤ P (max), ∀k ∈ K, (13d)

Re
{
h
H
k wk

}
≥ σk

Lk∑

l=1

ak,l
√
Γk,l, (13e)

(4b), (4c), (10a), and (11), (13f)

where the constraints (13b) can be rewritten as [9, Exer. 4.26]:
∥∥∥∥∥

[
2wk, tk −

Lk∑

l=1

ak,l

]∥∥∥∥∥
2

≤ tk +

Lk∑

l=1

ak,l, ∀k ∈ K. (14)

We remark that, due to the constraints in (13b), (13c),

(13d), and (13e), the continuous relaxation of formulation

(13) provides a much tighter upper bound on the objective

function of (4) than that obtained from the continuous relax-

ation of (12). This is because for the continuous relaxation of

(12), the reformulation in (11) can result in a lose approxima-

tion of (6). This is the case if the terms
{∑Lk

l=1 ak,l, ∀k ∈ K
}

become close to one (but not exactly one). However, in the

continuous relaxation of (13), the constraints in (13e) dom-

inate the constraints (11) and limit the values of the terms{∑Lk

l=1 ak,l, ∀k ∈ K
}

, resulting in a tighter upper bound.

To further speed up the BB methods, a preprocessing step

can be included to reduce the number of candidate MCSs in

the JRAB problem (4) if some of the MCSs cannot be sup-

ported even in the ideal case of no multiuser interference.

Specifically, the variable ak,l is fixed to zero if the maxi-

mum received signal-to-noise-ratio (SNR) of the kth MU, i.e.,

‖hk‖
2
2 P

(max)/σ2
k, is smaller than the SINR requirementΓk,l.

In addition to preprocessing, we propose an effective

branching prioritizing principle (BPP) that can be easily in-

corporated into the BB methods: (i) map the priorities of the

binary variables to the corresponding data rates, i.e., a higher

priority for a larger data rate; (ii) prioritize according to chan-

nel gains when two binary variables correspond to the same

data rate, i.e., a higher priority for a larger channel gain.

5. A LOW-COMPLEXITY ALGORITHM

To facilitate applications in large networks, we propose in this

section a fast heuristic algorithm to compute close-to-optimal

solutions of the JRAB problem in (13). The solutions found

by the heuristic algorithm can also serve as good initialization

points for the BB type methods.

We define the integers Υk,l, k ∈ K, l ∈ Lj , according to

Υk,l , 1 +
∑

j∈K,m∈Lj

I (λjRj,m < λkRk,l) , (15)

with the indicator function I (x < y) defined as

I (x < y) =

{
1, if x < y,
0, otherwise.

(16)

Denote K as the set of MUs that have been assigned a data

rate in a given iteration, with K = ∅ in the initial iteration.

After obtaining the supportable candidate MCS sets Lk, ∀k ∈
K, via preprocessing, the following step

(
k, l
)
= argmax

k∈K\K, l∈Lk

(
Υk,l max

j∈K
‖hj‖

2
2 + ‖hk‖

2
2

)
. (17)

is carried out in each iteration to select tentatively the lth
candidate MCS for the kth MU if Υk,l ≥ 1. Otherwise, if

Υk,l ≤ 0, the algorithm stops. Then, the following convex

feasibility problem:

find: W, (18a)

s. t. Im
{
h
H
j wj

}
= 0, ∀j ∈ K ∪ {k}, (18b)

∥∥[hH
j W, σj

]∥∥
2
≤

Re
{
h
H
j wj

}√
1 + 1/Γj , ∀j ∈ K ∪ {k}, (18c)

∑

j∈K∪{k}

‖wj‖
2
2 ≤ P (max), (18d)

is solved, with Γj denoting the minimum SINR requirement

corresponding to the MCS selected for the jth MU, ∀j ∈ K,

and Γk , Γk,l. If problem (18) is feasible, assign the lth can-

didate MCS to the kth MU and add k into the set K. This

procedure is carried out iteratively. To prevent loops, we set

Υk,l = 0 in each iteration. The algorithm is summarized in

Alg. 1. The worst-case computational complexity of the pro-

posed low-complexity algorithm consists in solving
∑K

k=1 Lk

times the feasibility problem in (18).
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Initialization: Initialize the set K to be empty set.

Step 1: Compute
(
k, l
)

as in (17). If Υk,l ≤ 0, exit.

Step 2: Check the feasibility of problem (18).

Step 3: If problem (18) is feasible, record lth MCS

for the kth MU and update the set: K = K ∪ {k}.

Step 4: Set Υk,l = 0, go to Step 1 and repeat.

Alg. 1: The proposed low-complexity algorithm

6. NUMERIC RESULTS AND DISCUSSIONS

In the simulations, we use the following channel model [4,

Chap. 9]: (i) 3GPP LTE pathloss mode: PL = 148.1 +
37.6 log(d) (in dB), with d (in km) being the BS-MS distance;

(ii) log-norm shadowing with zero mean, 8 dB variance; (iii)

Rayleigh fading with zero mean and unit variance; and (iv)

transmit antenna power gain of 9 dB, receiver noise figure of

7 dB, and system bandwidth of 1.4 MHz. The same candidate

MCSs in Tab. 1 are used for the K MUs. The distances be-

tween the BS and the K MUs are randomly generated in the

interval [0.2, 1] km. The maximum transmit power P (max)

varies from 8 dB to 16 dB with a stepsize of 2 dB. The MU

priority weights are set to be identical, i.e., λk = 1, ∀k ∈ K.

We first simulate a small network with K = 5 MUs and

M = 4 antennas at the BS. CPLEX is configured to compute

optimal solutions and the associated optimality certificates.

Tab. 2 lists the run-time averaged over 100 Monte Carlo runs

and the 5 values of P (max). Comparing the second and the

first rows of Tab. 2, we observe that the average run-time con-

sumed in finding optimal solutions of the formulation (13) is

about 26% of that for the formulation (12). Comparing the

second and the third rows of Tab. 2, we observe that the av-

erage run-time for solving the formulation (13) with BPP is

about 35% of that without BPP.

Table 2. Average run-time, with M = 4 and K = 5
Methods CPU Time

CPLEX on form (12) 24.40 seconds

CPLEX on form (13) 6.38 seconds

CPLEX on form (13) w/o BPP 18.31 seconds

In the second example, a system with K = 12 and M = 4
is simulated. The solver CPLEX is configured to find feasible

solutions of the JRAB problem (13) under a practical run-time

limitation of 60 seconds. Fig. 2 displays WSR vs. P (max),

with the results averaged over 100 Monte Carlo runs.

It can be observed from Fig. 2 that the proposed Alg. 1
yields WSRs that are larger than that computed by CPLEX

under the given rum-time limit, while Alg. 1 only consumes

about 8% of the run-time of CPLEX. Also, when CPLEX is

initialized with the solutions found by Alg. 1, new solutions

with larger WSRs can be reached by CPLEX. Finally, we ob-

serve that the solutions yielded by the proposed Alg. 1 are

very close to the upper bound computed by CPLEX and there-

fore the low-complexity algorithm is indeed close-to-optimal.
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Fig. 2. The curves from top to bottom correspond respec-

tively to the upper bound computed by CPLEX, the WSRs of

CPLEX initialized with the solutions of Alg. 1, the WSRs of

Alg. 1, and the WSRs of CPLEX without initialization.
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