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ABSTRACT

Differential pulse-code modulation is coupled with uniform

scalar quantization to provide block-based quantized com-

pressed sensing of images. Experimental results demon-

strate significant improvement in rate-distortion perform-

ance as compared scalar quantization used alone in sev-

eral block-based compressed-sensing reconstruction algo-

rithms. Additionally, rate-distortion performance superior

to that of alternative quantized-compressed-sensing tech-

niques relying on optimized quantization or reconstruction

is observed.

Index Terms—Compressed sensing, quantization, DPCM

1. INTRODUCTION

Recent literature has seen an explosion of interest in com-

pressed sensing (CS). Much attention has been devoted to

the CS of still images, with both sensing architectures (e.g.,

[1]) and image-reconstruction algorithms (e.g., [2–7]) be-

ing proposed. In most CS literature, the CS measurement

process—typically a linear projection into a lower-dimen-

sional subspace chosen at random—is assumed to take place

within the hardware of the sensing device. Consequently,

the CS measurement process can thus be considered to ef-

fectuate signal acquisition and dimensionality reduction si-

multaneously. However, in and of itself, this dimensional-

ity reduction obtained by the CS measurement process does

not produce compression in the strict information-theoretic

sense; indeed, some form of quantization is necessary to

produce a compressed bitstream from the CSmeasurements.

Although such quantization is unavoidable in any real-life

implementation of a CS measurement scheme, CS literature

has largely avoided the topic of quantization.

The straightforward solution to incorporating quantiza-

tion into the CS paradigm is simply to apply scalar quanti-

zation (SQ) to each of the CS measurements produced by

the sensing device. However, it has been established that

such an SQ-based solution is highly inefficient in terms of

information-theoretic rate-distortion performance as com-

pared to traditional source-coding techniques (e.g., [8]). As

a consequence, there have been a variety of efforts in re-

cent literature aimed at the improvement of rate-distortion
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performance of quantized CS, largely through an optimiza-

tion of the quantization process (e.g., [9]), the reconstruc-

tion process (e.g., [10, 11]), or both (e.g., [12, 13]).

In contrast to prior work on quantized CS which largely

relies on optimized quantization or reconstruction, we pro-

pose a straightforward process of quantization via simple

uniform SQ applied in conjunction with differential pulse

code modulation (DPCM) of the CS measurements. Our

framework is applicable only to the CS of images effectu-

ated in blocks, i.e., block-based CS (BCS) [2–6]. In essence,

at the sensor side of the system, rather than applying quan-

tization directly to each block of CS measurements, a pre-

diction of the block is made and subtracted from the current

block of measurements in the measurement domain. The

resulting residual is then scalar-quantized. At the recon-

struction side of the system, the same prediction is added

onto the dequantized residuals to produce the quantized CS

measurements ready for BCS-based reconstruction.

A key benefit of our proposed DPCM-based methodol-

ogy is that both the BCS-based sensor as well as the BCS-

based reconstruction are unmodified; in fact, the latter can

be any BCS-based reconstruction. While the sensor de-

vice does incur some additional complexity, the addition

of the DPCM processing (a subtraction) is not substantially

more burdensome than the already-necessary SQ. Experi-

mental results using state-of-the-art BCS-based reconstruc-

tion algorithms on still images demonstrate that, not only

does this simple DPCM-plus-SQ approach to quantized CS

provide rate-distortion performance surprisingly competi-

tive with that of alternative approaches such as [11, 13], it

can occasionally rival traditional image coding in the form

of JPEG, particularly at low bitrates.

2. BACKGROUND

In brief, CS is a mathematical paradigm which permits, un-

der certain conditions, signals to be acquired via linear pro-

jection into a dimension much lower than that of the origi-

nal signal, yet which still allows exact recovery of the signal

from the measurements. More specifically, suppose that we

want to recover real-valued signal x with length N from

M measurements such that M ≪ N . In other words, we

want to recover x from y = Φx, where y has length M ,

and Φ is an M ×N measurement matrix with subsampling

rate, or subrate, being S = M/N . Because the number of
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Figure 1: Application of DPCM and SQ to the BCS-SPL architecture of [3]. BCS is implemented with any CS-based image-

acquisition, such as the single-pixel camera of [1]; Q is uniform SQ; D is a single-block delay buffer; and C is any entropy

coder, such as arithmetic coding.

unknowns is much larger than the number of observations,

recovering every x ∈ ℜN from its corresponding y ∈ ℜM

is impossible in general; however, if x is sufficiently sparse

in some domain, then exact recovery of x is possible—this

is the fundamental tenet of CS theory.

In BCS, an image is divided into B × B blocks and

sampled using an appropriately-sized measurement matrix.

That is, suppose that x(j) is a vector representing, in raster-

scan fashion, block j of input image x. The corresponding

y(j) is then y(j) = ΦBx(j), where ΦB is an MB × B2

measurement matrix such that the subrate for the image as a

whole is S = MB/B2. It is straightforward to see that ΦB

applied block-by-block to an image is equivalent to a whole-

image measurement matrix Φ with a constrained structure;

specifically, Φ is constrained to be block diagonal with ΦB

along the diagonal.

In [2], BCS was proposed wherein the sampling of an

image is driven by random matrices applied on a block-by-

block basis, while the reconstruction is a variant of pro-

jected Landweber (PL) reconstruction that incorporates a

smoothing operation intended to reduce blocking artifacts.

Since it combines BCS with a smoothed PL (SPL) recon-

struction, in [3], the overall technique was called BCS-SPL.

BCS-SPL was extended to incorporate block-based mea-

surement in the domain of a wavelet transform in [4]; the

resulting multiscale approach was called MS-BCS-SPL. A

further extension of BCS-SPL was presented in [5] wherein

multiple predictions were culled from the image being re-

constructed, following which reconstruction was driven by

the measurement-domain residual resulting from the pre-

dictions. This latter technique was called multihypothesis

BCS-SPL (MH-BCS-SPL) in [5].

3. DPCM FOR QUANTIZED BCS

Effectively, our proposed approach applies DPCM and SQ

onto the CS measurements within the BCS-SPL architec-

ture of [3] as shown in Fig. 1. On the sensor side of the sys-

tem, BCS measurements are acquired as usual using B ×B
blocks from the original image, producing M -dimensional

measurement vector

y(j)
=

[

y
(j)
1 · · · y

(j)
m · · · y

(j)
MB

]T

= ΦBx(j) (1)

for block j of the image, x(j). For component m in mea-

surement vector y(j), a prediction is subtracted and the resid-

ual is scalar-quantized. Specifically, to predict y
(j)
m , we use

the corresponding vector component of the previously pro-

cessed block ŷ(j−1). That is, the residual d
(j)
m = y

(j)
m −

ŷ
(j−1)
m is scalar-quantized to produce quantization index

i
(j)
m = Q

[

d
(j)
m

]

which is then entropy coded. The DPCM
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Figure 2: Correlation coefficient ρj between current block

y(j) and preceding block y(j−1) for the 512 × 512 Lenna

image. Blocks of size 16 × 16 are extracted from the im-

age and subject to random projection with a subrate of 0.5.

Average correlation over all blocks is ρ̄ = 0.971.

feedback loop consists of dequantization of i
(j)
m , produc-

ing the quantized residual, d̂
(j)
m = Q−1

[

i
(j)
m

]

such that

ŷ
(j)
m = d̂

(j)
m + ŷ

(j−1)
m . Finally, the prediction is implemented

with a one-block delay buffer. We note that the set of mea-

surements in the first block is processed in the same manner

by initializing ŷ(0) to be the zero vector.

In general, DPCM works when signals possess a sig-

nificant degree of correlation from one time to the next.

Such correlation typically exists in images from one im-

age block to the next, and random projection in the form

of y(j) = ΦBx(j) preserves this correlation. For example,

we define the measurement-domain correlation coefficient

between blocks y(j) and y(j−1) as

ρj =
y(j)T

y(j−1)

∥

∥y(j)
∥

∥

∥

∥y(j−1)
∥

∥

. (2)

Fig. 2 plots ρj for a single grayscale image; we see that,

for many blocks, ρj is close to 1.0, while the average cor-

relation over all blocks, ρ̄ = 0.971, indicates that the con-

secutive blocks are typically highly correlated, even in the

measurement domain.

The basic approach of Fig. 1, which illustrates our pro-

posed framework for the incorporation of DPCM into BCS-

SPL, can also be applied to the MS-BCS-SPL [4] and MH-

BCS-SPL [5] variants. Specifically, for the former, wavelet-

domain blocks in the baseband are fed into the DPCM en-

coder, while the other subbands are quantized directly with

uniform SQ (unlike the baseband coefficients, those in the

other subbands have low correlation). For the latter, the

DPCM encoder processes the same measurements as those

of the original BCS-SPL without reserving a holdset for

cross-validation.

We mention that our proposed DPCM-based approach

bears some resemblance to the sigma-delta quantization for

CS in [14] in the sense that sigma-delta modulation also pro-

vides quantization based on differences between CS mea-

surements. Our approach is somewhat simpler conceptually

([14] requires Sobolev frames for reconstruction); addition-

ally, we apply DPCM across blocks rather than sample-by-

sample as in the sigma-delta modulation of [14].

4. RESULTS

We now present experimental results that demonstrate the

performance of the proposed technique for DPCM-based

quantized CS.We first examine the rate-distortion efficiency

of DPCM plus SQ by comparing it to simple uniform SQ ap-

plied alone to the BCS measurements. We use several BCS-

based algorithms—namely, the original BCS-SPL from [3]

as well as the MS-BCS-SPL and MH-BCS-SPL extensions

from [4] and [5], respectively—and deploy DPCM plus SQ

in the framework presented in Fig. 1 to effectuate quantized

CS for all three methods. We note that the implementa-

tions of BCS-SPL, MS-BCS-SPL, and MH-BCS-SPL can

be found at the BCS-SPL website1.

All experiments use 512 × 512 grayscale images, and

we measure rate-distortion performance in terms of peak

signal-to-noise ratio (PSNR) in dB and bitrate in bits per

pixel (bpp) using the entropy of the quantizer indices as an

estimate of the actual bitrate that would be produced by a

real entropy coder. The measurement matrix ΦB is an or-

thonormalized dense Gaussian random matrix, and a 5-level

dual-tree discrete wavelet transform (DDWT) [15] is used

as the sparsity basis for all three methods. A BCS block

size of B = 16 was used for both BCS-SPL and MH-BCS-

SPL, while MS-BCS-SPL uses B = 2 for each of the levels

within the wavelet-based measurement basis. All SQ is uni-

form. Finally, we note that, for both SQ as well as DPCM

plus SQ, the bitrate obtained depends on both the stepsize

of the scalar quantizer as well as the subrate S = MB/B2

of the BCS measurement process. In all cases, for the ex-

periments here, the optimal combination of quantizer step-

size and subrate is chosen via an exhaustive search over all

possible (stepsize, subrate) pairs drawn from a finite set of

stepsizes and a finite set of subrates.

Table 1 compares the PSNR performance at a fixed bi-

trate of 0.5 bpp for the three BCS-based techniques, BCS-

SPL, MS-BCS-SPL, and MH-BCS-SPL. We see that, for all

three algorithms, the addition of DPCM to the quantization

process increases the PSNR by 0.5 to 1.0 dB on average as

compared to simply using SQ alone.

Figs. 3–6 present the rate-distortion performance for all

1http://www.ece.msstate.edu/~fowler/BCSSPL/
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three BCS-based techniques using the proposed DPCM plus

SQ framework for a bitrate ranging from 0.1 to 1.0 bpp.

Additionally, Figs. 3–6 include as benchmarks two other

quantized-CS approaches—MARX [7] reconstruction using

the progressive quantization (PQ) proposed in [12], and ba-

sis pursuit dequantizer (BPDQ)2 [11]. Finally, we also in-

clude the rate-distortion performance of JPEG as indicative

of the performance of a relatively simple image coder built

with traditional source-coding techniques. Generally, we

see that the DPCM-based MS-BCS-SPL reconstruction out-

performs the other quantized-CS techniques; however, tra-

ditional source-coding in the form of JPEG achieves the best

rate-distortion performance, except at low bitrates (0.2 bpp

and below) where MS-BCS-SPL with DPCM yields higher

PSNR.

5. CONCLUSION

In this paper, we proposed the incorporation of DPCM to

achieve quantized CS of images based on blocks. In essence,

we used one measurement-domain block to predict the next,

applying uniform SQ to the measurement-domain residual

of the prediction. Experimental results demonstrated an im-

provement of 0.5 to 1 dB in rate-distortion performance as

compared to BCS-based image reconstruction using uni-

form SQ alone. Additionally, rate-distortion performance

superior to alternative quantized-CS schemes relying on op-

timized quantization or reconstruction was observed.
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Table 1: PSNR Performance in dB for a bitrate of 0.5 bpp

BCS-SPL MS-BCS-SPL MH-BCS-SPL

Image SQ DPCM Gain SQ DPCM Gain SQ DPCM Gain

Lenna 27.7 29.4 +1.7 33.9 34.7 +0.9 29.2 30.7 +1.5

Barbara 22.9 23.6 +0.7 26.6 27.4 +0.8 27.3 28.2 +0.9

Peppers 28.6 29.5 +0.9 33.8 34 +0.2 29.6 30.3 +0.7

Goldhill 26.7 27.4 +0.7 30.6 31 +0.5 27.0 28.2 +1.2

Man 26.2 26.9 +0.7 30.5 30.7 +0.2 26.5 27.3 +0.8

Clown 26.7 27.6 +0.9 32.7 33.2 +0.5 28.8 29.8 +1.0

Average 26.5 27.4 +0.9 31.3 31.8 +0.5 28.1 29.1 +1.0
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Figure 3: Rate-distortion performance for Lenna
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Figure 4: Rate-distortion performance for Barbara
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Figure 5: Rate-distortion performance for Peppers
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Figure 6: Rate-distortion performance for Goldhill
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