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ABSTRACT

This paper proposes a new approach for face recognition by
representing inter-face variation using orthogonal decomposi-
tions with embedded diffusion. The modified Gram-Schmidt
with pivoting the columns orthogonal decomposition, called
also QR algorithm, is applied recursively to the covariance
matrix of a set of images forming the training set. At each re-
cursion a set of orthonormal bases functions are extracted for
a specific scale. A diffusion step is embedded at each scale in
the QR decomposition. The algorithm models the main vari-
ations of face features from the training set by preserving only
the most significant bases while eliminating noise and non-
essential features. Each face is represented by a weighted sum
of such representative bases functions, called ortho-diffusion
faces.

Index Terms— Diffusion wavelets, Face recognition,
Gram-Schmidt orthogonal decomposition, Eigenfaces.

1. INTRODUCTION

A challenge in complex data analysis is when we have to re-
cover a low dimensional intrinsic manifold which manifests
itself through a very complex representation in the observable
space. The use of kernels on undirected graphs was shown
to lead to good results in machine learning tasks. Various
approaches have been adopted for modeling data represen-
tations using diffusion processes on graphs [1, 2, 3]. Diffu-
sion maps [2, 3, 4] achieve dimensionality reduction by re-
organizing data according to the parametrization of its under-
lying geometry on orthogonal sub-spaces. When the diffusion
is propagated, it integrates the local data structure to reveal
relational properties of the data set at different scales [3, 4].
Maggioni and Mahadevan proposed in [5] a new multi-scale
orthogonal decomposition on graphs into sets of bases func-
tions and diffusion wavelets.

One of the classical face recognition methods was the
eigenfaces method proposed by Turk and Pentland [6]. Each
face is represented as a linear combination of the eigenvec-
tors resulting from eigendecomposing the covariance matrix
of a training set of faces. Extensions of this method include
the Fisherfaces [7], the kernel PCA method [8] and the Lapla-
cianfaces [9]. Orthogonal Laplacianfaces approach was pro-
posed in [10] while a multilinear discriminant analysis was

employed in [11] for face recognition. Nevertheless, human
identification depends on incorporating multi-modal human
features such as the 3-D appearance and speech characteris-
tics as well [12].

In this paper we propose to use orthonormal diffusion
wavelet methodology for face recognition. The modified
Gram-Schmidt algorithm with pivoting the columns QR,
is used recursively for extracting a set of orthogonal basis
functions, each representing an ortho-diffusion face. At each
recursion, we consider data diffusion on the graph leading to
the application of theQR algorithm in the following step on a
dilated scale of the data. Ortho-diffusion bases which do not
represent significant information are removed from further
processing at each level. Each human face is defined by its
projections onto the ortho-diffusion face space. In the testing
stage, faces are classified according to the nearest neigh-
borhood to the training data defined in the ortho-diffusion
face space. The proposed ortho-diffusion faces method is
described in Section 2. The face recognition method using
ortho-diffusion faces is detailed in Section 3. In Section 4
we provide the experimental results while the conclusions are
given in Section 5.

2. ORTHONORMAL DECOMPOSITIONS
USING QR ALGORITHM

Let us consider a training set of M face images {Ii|, i =
1, . . . ,M}, of size m × n, and consider each of them as a
vector of mn pixel entries. In the following we model the
face variation within the given training set by calculating the
deviation of each face from the mean face as in [6]:

Ī =
1

M

M∑
i=1

Ii, (1)

where Ii represents the mean face

Si = Ii − Ī. (2)

Each Si forms a column in a matrix A of size M ×mn. The
spread of the face variation within the training set is calcu-
lated by means of the covariance matrix C:

C = AτA (3)

where matrix C is the diagonal covariance matrix of the train-
ing set, of size M ×mn, with each column corresponding to

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 1578



the squared difference of pixels’ value in a training set image
from the mean face image. We apply the diffusion wavelet
analysis onto C representing the the face variation within the
given data set.

In the following we describe how to use the orthogonal
decompositions of diffusion wavelets in order to extract the
ortho-diffusion faces from the matrix C. A diffusion wavelet
tree is produced by the recursive orthogonal decomposition of
the data representation matrix C into a set of diffusion scaling
functions and their orthogonal wavelet functions at each scale
j, [5]. The scaling functions at scale j span the subspace
Vj , while the wavelets span the space Wj , representing the
orthogonal complement of Vj into the Vj+1 domain:

Vj+1 = Vj ⊕⊥Wj (4)

where the diffusion bases are characterized by Vj+1 ⊆ Vj .
There are three steps to construct the ortho-diffusion face at
each scale: orthogonalization, operator compression and di-
lation. The diffusion scaling functions are smoothly bumped
functions with some oscillations of scale 2j , while the orthog-
onal wavelets are localized oscillatory functions representing
the high frequency residuals at the same scale. In the follow-
ing we look for modeling significant image features which are
mostly represented by extended bases functions. Meanwhile,
the wavelet functions represent random texture and noise in-
formation and are not of interest for further analysis. A dif-
fusion wavelet tree is achieved by using dyadic powers C2j ,
corresponding to dilations, which are used to create smoother
and wider bumps functions employed for data analysis on the
given graph structure.

The diffusion wavelet method represents a recursive ap-
plication of the modified Gram-Schmidt with pivoting the
columns (QR algorithm) [5]. The QR algorithm decom-
poses a given matrix into an orthogonal matrix Q whose
columns are orthonormal bases functions and a triangular
matrix R. In the following we use the notation [Φb]Φa for
a matrix representing the base Φb with respect to Φa. We
denote the triangular matrix by [C]Φb

Φa
whose column space

is represented using bases Φa at scale a, while the row space
is represented using bases Φb at scale b. The matrix C is
represented initially at the scale j = 0 on the basis set Φ0 as
[Φ0]Φ0 and let us consider its columns as the set of functions
Φ̃0 = {[Φ0]Φ0δk}k on the given graph, where δk is a set of
Dirac functions. The QR procedure decomposes [C]Φ0

Φ0
at

the first level j = 0 as:

[C]Φ0

Φ0
= [C]Φ1

Φ0
[Φ1]Φ0

(5)

QR decompositions produces a linear transformation repre-
sented through the triangular matrix [C]Φ1

Φ0
, which is the trans-

formation of the matrix C, whose columns are represented
with respect to the base Φ1 while the rows are represented
with respect to Φ0, and the orthonormal matrix [Φ1]Φ0 rep-
resenting the base [Φ1] with respect to [Φ0].

We consider that the QR decomposition is applied recur-
sively, where at each scale j, the base Φj+1 replaces Φj ,

starting with j = 0, as in equation (5). The orthonormal bases
functions spanning Φj and representing columns in [Φj ]Φj

represent characteristic features of the given face image set.
The QR decomposition is followed by a data reduction step.
The columns, at a scale j > 0, whose norms are smaller that
a given precision ε, are eliminated due to their low contribu-
tion to the data representation. Henceforth, we consider for
further processing only the columns that carry the important
data representation on the given diffused graph:

Φ̃j = {‖[Φj+1]Φj
δk‖ > ε}k, (6)

where ‖·‖ represents the norm of the column extracted by the
Dirac function δk. When removing a column from [Φj+1]Φj ,
we remove its corresponding row from [C2j+1

]
Φj+1

Φj
, as

well. For enforcing the sparseness of the triangular ma-
trix [C2j+1

]
Φj+1

Φj
we neglect all entries which are smaller than

a threshold θ and consider them as zero henceforth. Column
pivoting is employed as well when the given matrix is nearly
rank deficient.

The decomposition and data reduction stages described
above are followed by data representation dilations on the
graph defined as [C2j ]

Φj+1

Φj
for the scale j. At the scale j+ 1,

we square the operator to obtain the dilation [C2j+1

]
Φj+1

Φj+1
by

using:
[C2j+1

]
Φj+1

Φj+1
= ([C2j ]

Φj+1

Φj
[Φj+1]Φj

)2

= [C2j ]
Φj+1

Φj
([C2j ]

Φj+1

Φj
)τ . (7)

This corresponds to implementing a diffusion on the data rep-
resentation on the scale 2j and reprojecting the given mani-
fold data to the scale 2j+1.

The extended base [Φj+1]Φ0
is calculated at each recur-

sion j + 1 with respect to the initial base Φ0 as in the follow-
ing:

[Φj+1]Φ0 = [Φj+1]Φj [Φj ]Φ0 . (8)

At each scale j + 1, the number of basis functions decreases
and the matrix [Φj+1]Φj

becomes smaller. Each basis func-
tion, representing a column of [Φj+1]Φj

, can be used to rep-
resent image features in a low resolution image, while the
extended base function, representing a column of [Φj+1]Φ0

,
maps these features to the size of the original image. At the
scale j + 1, the representation of C2j+1

is compressed based
on the amount of the remaining underlying data and the de-
sired precision ε.

3. FACE RECOGNITION USING
ORTHO-DIFFUSION FACES

Each face image contributes more or less to each column vec-
tor in the extended base representation [Φj ]Φ0

and this can
be mapped into a set of ortho-diffusion faces. The ortho-
diffusion faces are obtained by using a similar approach to
the diffusion maps from [2, 3, 4], but using orthonormal ex-
tended bases functions as produced by the methodology de-
scribed above, instead of the eigenvectors of the Laplacian
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Fig. 1. Representation of 140 out of a total 198 of ortho-diffusion faces used for the ORL database face classification, where
we add the value of 50 to the graylevel value of each pixel for better vizualization.

matrix. The diffusion distance metric calculated based on the
extended basis functions at the level j between two image
pixels at locations i and k is given by:

DΦj
(i, k) =

√
(Φj(i)− Φj(k))τ (Φj(i)− Φj(k)) (9)

where we consider all the extended bases functions defined on
the graph between the two given pixels. The ortho-diffusion
face is obtained by calculating the feature representation at a
certain image location by summing up the diffusion distances
from all the other image pixels:

∆i,j =

mn∑
k=1

DΦj
(i, k). (10)

After calculating these distances for i = {1, . . . ,mn} we can
have an approximate reconstruction of a ghost face.

A set of column vectors from Y = {[Φj ]Φ0δk}k for
k = 1, . . . , N can be considered as a set of features that
jointly characterizes the variation of face images in the given
training set. We calculate the weight vector Ωi of the face
Ii, by projecting the training face difference from the average
face, denoted as Si from (2), onto the given ortho-diffusion
face space:

Ωi = YτSi (11)

where i = 1, . . . ,M characterize all face images from the
training set. The weights Ωi define the coordinates for each
image Ii in the ortho-diffusion feature space ofN feature vec-
tors. We can approximate a face by using the ortho-diffusion
faces as:

Îk = Ī + YΩk (12)

Where, Îk is the reconstructed face and Ωk represent its
weights in the given ortho-diffusion face space.

For a given image face It, which is not in the training set,
we can calculate its corresponding weights in the given ortho-
diffusion space. Face recognition is performed according to
the minimum Euclidean distance in the space defined by the

ortho-normal faces, representing a nearest neighbor classifi-
cation in the ortho-diffusion face space:

arg
M

min
k=1

[(Ωt −Ωk)τ (Ωt −Ωk)] (13)

where we assume known the person identity for allM training
faces.

4. EXPERIMENTAL RESULTS

In the following we apply the ortho-diffusion wavelets for
face recognition on the ORL and Yale face databases. We
consider the precision for eliminating non-essential bases
functions in theQR algorithm as ε = 10−6, while the sparse-
ness threshold for each element in the triangular matrix is
chosen as θ = 2.2 × 10−16. The ORL database1 contains
40 subjects, with 10 images for each subject. The images
were taken at different times, varying the lighting, facial ex-
pressions and with small variations in the face orientation.
The images are resized to 56 × 46 from their original size
of 112 × 96 in order to reduce the computational complex-
ity. Fig. 2 displays all the images from the ORL database.
We consider a training set of five faces for each person and
this results into an initial data representation matrix of size
2576 × 200. After applying the proposed otho-diffusion
decomposition methodology, each extended basis function is
represented as an ortho-diffusion face. Fig. 1 displays the first
140 ortho-diffusion faces, from the total of 198 which have
been found as significant by the proposed ortho-diffusion
methodology in order to represent the given set of training
faces. It can be observed from Fig. 1, that the ortho-diffusion
faces represent various face features characteristic to the
training set. The weights representing the mapping of each
face in this ortho-diffusion face space are calculated for each
face using equation (11).

1The ORL database was obtained from
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
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Fig. 2. The face image data from the ORL database.

We reconstruct the whole database of 400 faces by using
198 ortho-diffusion faces according to equation (12). The re-
constructed face set is shown in Fig. 3. and we can observe
that each face is reconstructed up to a certain precision. A hu-
man observer can identify correctly the individual represented
in each reconstructed face. When considering the training set
of five faces for each human subject, we classify the other five
based on nearest neighbor classification in the ortho-diffusion
face space. Only 18 faces have not been classified correctly,
when considering for training the first five faces for each sub-
ject in the ORL database and these are shown within black
contours in Fig. 3. It can be observed that these faces dis-
play significant changes with respect to those representing the
same human subjects from the training set.

In the following we vary the size of the training set and
evaluate the classification results on the remaining faces. The
face classification results are displayed in Fig. 4. Under each
test result we specify the number of ortho-diffusion faces used
for defining the ortho-diffusion face space. We can observe
that when increasing the size of training set we can improve
the recognition results up to the rate of 96.25% classification
accuracy when using 80% of database for training and the rest
of 20% for testing.

The Yale database2 contains 165 images of 15 subjects,
2Yale database was taken from

Fig. 3. Reconstructed faces from the ORL database.

Fig. 4. Face recognition rate when varying the training set
size as a percentage of the entire ORL database. The number
of ortho-diffusion faces is indicated for each experiment.

which are shown in Fig. 5(a). There are 11 images per subject
shot when varying facial expressions, with or without specta-
cles and within a wide variation of lighting. We can observe
that the 4th and 7th sample face images for each individual
have significant lighting variation. We consider five faces for
each subject for the training stage. We evaluate the covariance

http://cvc.yale.edu/projects/yalefaces/yalefaces.html

1581



matrix of the training set and then apply the ortho-diffusion
face methodology from Section 3. The reconstructed faces
from the Yale database using the ortho-diffusion faces are
shown in Fig. 5(b). Faces which are not recognized in this
case are represented within black contours in Fig. 5(b). We
can observe that 6 out of the 8 wrongly classified faces are
characterized by significant illumination changes from those
characteristic to the training set.

In the following we consider 20 different sets of training
faces or the ORL database and 15 different training sets for
the Yale database, which are chosen based on different combi-
nations of 50% faces for training and the rest for testing. The
average of the classification rates for the proposed methodol-
ogy, Eigenfaces [6], Fisherfaces [7], Laplacianfaces [9] and
Orthogonal Laplacian faces [10] are provided in Table 1. The
experiments have been conducted under the same conditions
and when resizing all faces to 56× 46 pixels.

Table 1. Comparison of various face recognition methods for
ORL and Yale databases.

Method ORL Yale
Database (%) Database (%)

Diffusion
Wavelet 93.95 87.56

Eigenfaces 93.62 86.93
Fisherfaces 92.02 94.84

Laplacianfaces 91.70 94.22
Ortho-Laplacianfaces 93.60 86.93

(a) (b)

Fig. 5. Images from the Yale face database. (a) Original data
set. (b) Reconstructed faces from the Yale database. Faces
which are not recognized when considering a training set of
75 faces are shown within black contours.

5. CONCLUSION

In this paper we describe a new face recognition approach
based on graph orthonormal decompositions. The proposed
ortho-diffusion face decomposition method is based on the
modified Gram-Schmidt algorithm with pivoting the columns.
The inter-face variation matrix for a given training set is re-
cursively processed using orthonormalization, reduction and
dilation stages. A set of representative orthonormal extended
basis functions are extracted from the given data set. Each of
these extended bases functions represent an ortho-diffusion
face and face classification takes place using the nearest
neighbor rule in the ortho-diffusion face space.
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