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ABSTRACT

This paper presents a lossy coding method for depth images

using a segmentation constructed by selecting regions of pix-

els having the depth values obeying constraints defined in

terms of some bounds, which are tuned in order to obtain the

target distortion. The contours describing the segmentation

are transmitted using an efficient chain coding method and are

thus available also at the decoder for the next stage, which is

region based predictive coding with a tunable precision level.

The rate comprises the cost of losslessly transmission of the

contours and the cost of transmitting the residuals with the

decided precision, which is the main factor influencing the

distortion. We introduce a procedure optimizing the param-

eters involved in the segmentation and in the prediction for

a given image. As a side result, the segmentations residing

on the convex hull of the RD curve can be seen as optimal

segmentations with various granularity.

Index Terms— lossy compression, near-lossless com-

pression, depth image, segmentation, rate-distortion

1. INTRODUCTION

The subject of depth compression has received increased at-

tention recently, mostly due to the wide range of applications

for 3D representations, in computer vision, 3DTv, and com-

puter games. Applying the same compression methods for

depth images as for the gray-level or color pictures is not as

efficient as designing new methods, dedicated to the types of

regularities present in depth images. In [1] we have shown

that dedicated lossless compression methods can reduce to

half the size of compressed files produced by the standard

JPEG-LS image compressor.

The literature on lossy depth image compression is wide,

mostly in connection to the compression of multiview images,

where the interesting bit-rates are in the very low end, even

below 0.1 bpp, see e.g. [2][3] and reference lists therein. Our

method addresses higher rate ranges aiming at near-lossless

coding, with prior work existing in, e.g., [4] [5].

2. THE PRINCIPLE OF THE METHOD

The basic principle of constructing the segmentation is to split

the image into two types of regions: for the first type, a region

”with local variability λ” should contain any pixel which has

inside the region at least one neighbor such that the differ-

ence between the depth values of the pixel and its neighbor

is at most equal to a given threshold λ, and additionally the

size of the region is also constrained. In the case of regions

of second type, from the regions with local variability λ = 1
are selected those which have also global variability 1, i.e.,

they contain pixels with only two distinct depth values. The

regions obeying the local constraint variability condition may

have quite a diverse distribution of depth values, e.g., pla-

nar sections starting with one side close to the camera, with

a low depth level and ending on the other side with a very

high depth value; as a different example the regions are en-

compassing also second order surfaces, typical in the case of

round, spherical, cylindrical, or conical objects. By varying

the threshold λ the sizes of the regions will change. The pro-

cess of finding the regions is iterative, starting with finding

the connected regions at small thresholds and if they are large

enough they are declared regions, and then the process con-

tinues at larger thresholds. The values of the thresholds and

the lower bound of the region size for declaring a region are

parameters determining many possible partitions of the image

into regions. When the parameters determine a rough granu-

larity, the cost of transmitting the contours of regions is small.

Here we use chain codes which are very cheap ways of trans-

mitting losslessly the contours, and hence we do not resort to

parametric models for coding the contours in a lossy manner,

which is the option followed in most of the previous lossy

coding methods.

After the regions are defined, in each region we use lossy

predictive coding, where the prediction is performed based

on the reconstructed depth of the previously transmitted pix-

els and the quantization of the prediction residuals is uniform,

with a tunable step size 2η + 1, for all regions except those

regions which contain two or three distinct depth values. The

parameter η defining the quantization steps belongs to the set

{0, 1, 2, 3}, where η = 0 means no quantization, in which
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case the compression is lossless for the involved regions. The

regions having only two or three distinct depth values are

treated differently; in each of them only one reconstruction

value is chosen (the one minimizing the sum of square errors

inside the region) and then is transmitted to the decoder.

When the targeted bitrate is in the low range (below 0.2

bpp), we introduce an additional preprocessing stage: before

segmentation stage the last bit of the depth values is removed,

the average of all these removed bits is computed, and if the

average is larger than 0.5, a bit of one is appended as a least

significant bit of the final depth values obtained after the re-

construction at the decoder. In this way the range of depth

values is halved and only a rough reconstruction of the last

bit is performed, by the majority bit.

In the following section we present the algorithmic design

of the segmentation and the way to combine the lossless con-

tour compression and the lossy prediction residuals encoding.

The obtained results are compared with [4].

The depth image contains the depth value I(x, y) ∈
{0, 2B − 1} for each pixel (x, y). For illustrations we use as

input image the same one used in [4], namely the first frame

of view 1 from the Breakdancing sequence [6], which has the

number of bit-planes B = 8. We will define the segmentation

as the union of all regions, Ω1, . . . ,Ωnr
, that make up the

depth image.

3. ALGORITHM DESCRIPTION

3.1. Generating a segmentation

The main problem for obtaining the best results is to gener-

ate a suitable segmentation of the image so that after loss-

less contour compression the decoder knows enough distinct

regions and with an additional bitstream containing the pre-

diction residuals it can obtain small overall distortion using a

low bitrate. Our solution is an iterative segmentation which

allows a different variability inside some regions, while for

other regions, beside imposing the fixed variability λ = 1, it

is additionally required that the overall number γ of distinct

depth-levels is small. At a given step of the algorithm all con-

nected components which contain more than Nλ (or Kγ) pix-

els are declared regions. The process can be characterized by

the maximum allowed variability λ with its associated mini-

mum size Nλ of a region, and the constrained number γ of

distinct depth-levels with its associated minimum size Kγ .

For a current pixel (xt, yt) the set of the four neighbors

in 4-connectivity is denoted N4(xt, yt). The variability of the

current pixel (xt, yt) inside a given region Ωj is defined as

the minimum value of the absolute differences of the depth

values between the current pixel and those neighbors which

are part of the region [1], as follows:

V (xt, yt) = min
(xi,yi)∈N4(xt,yt)∩Ωj

|I(xt, yt)− I(xi, yi)|.

The segmentation algorithm starts by finding the sets of

connected pixels having variability λ = 0 and declaring them

candidate regions. In the next stage each candidate region

having at least Kγ pixels is declared a region Ωj of the seg-

mentation, and the remaining pixels, not yet in the already

decided regions, are then grouped in connected components

that have variability at most λ = 1 and a number of distinct

depth-levels γ = 2. Using these constraints one can generate

regions that have only two consecutive depth-levels that are

compressed using a single reconstruction depth level, the one

which gives the minimum distortion. In the next step we iter-

ate for successive thresholds on variability λ ∈ Λ = {1, 3}.

At each iteration step, each candidate region from the previ-

ous step having at least Nλ pixels is declared a region Ωj of

the segmentation, and the remaining pixels not yet in already

decided regions are then grouped in connected components

and all such components with variability not exceeding λ are

declared candidate regions for the next step. At the last step

all candidate regions are automatically declared regions of the

segmentation. According to the definition of the variability

constrained regions, the obtained segmentation is unique. The

regions with size smaller than 5 pixels, which make a large

proportion of the whole number of regions, are merged with

the largest neighbor region because of the high cost of trans-

mitting them separately. This ensures the reduction of the

contour length, and even more importantly, the elimination of

some points in the contour with more than two contour-edge

intersections, points that are required to be transmitted sepa-

rately as anchor points and which require a large number of

bits for encoding.

We consider in the experiments two versions of the seg-

mentation, the first L-CRS using the merging of the very small

regions, the second, NL-CRS keeping the small regions as

part of the segmentation.

3.2. Quantization and encoding of regions with almost

constant depth

The obtained regions which have a small number, γ, of dis-

tinct levels are quantized and encoded in a simpler manner

than the rest of the regions. This simple quantization and

encoding is used because a near-lossless quantization could

have set the regions with a depth-level that produces a large

distortion.

In each region that has γ = 2 distinct depth levels, g and

g+1, the quantized depth value is set to that value, g∗, which

occur the most often among the two consecutive levels, this

process being equivalent to the reconstruction minimizing the

distortion.

In each region that has γ = 3 distinct depth levels, first the

mean square distortion after quantizing by the optimal level is

computed, and if the resulting PSNR is smaller than a thresh-

old T3 then the region is quantized and encoded using the

predictive method presented in the next section, otherwise it
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Table 1. The prediction neighborhood NP of the current pixel

(xt, yt), which is marked by ”x”. Also shown are the letters

used for the depth values of the neighbors.

is processed similarly to the case γ = 2, where only the opti-

mal quantization level is encoded and used as a reconstruction

at the decoder.

3.3. Local nonlinear prediction

We predict the depth I(xt, yt) for a current pixel (xt, yt) ∈
Ω by using the reconstructed values Ĩ(xi, yi) of the pixels

(xi, yi) ∈ Ω which also belong to a causal neighborhood

NP (xt, yt) of the pixel (xt, yt), depicted in Table 1. We de-

noted by Ĩ(x, y) the value available at the decoder, obtained

using the quantized prediction residuals. Similarly as in [1],

for each region the horizontal scanning and the vertical scan-

ning are tested, both with causal neighbors (a, c, d), and the

one giving better performance is selected and announced to

the decoder by one bit per region. Although both scanning

orders use the same causal neighborhood, different quantized

residues are obtained for each scanning order and hence the

two compression ratios for a region are different.

In [1] we used an optimal predictor selected among 15

mixture predictors, În(NP (xt, yt)), n = 1, . . . , 15. Here the

optimal predictor is taken the one with index n = 1, which

gave the best results in our tests. Hence, the collection of

elementary predictions of the nonlinear predictor, denoted

P(N (xt, yt)), is P(N (xt, yt)) = {a, c, c + a − d}. If one

of the used neighbors are not in the causal neighborhood, the

elementary prediction is eliminated from P(N (xt, yt)).
Consequently, in this paper the prediction is calculated as

follows: În(N (xt, yt)) = median{Pn(N (xt, yt))}.

3.4. Encoding of quantized prediction residuals

The encoding of the pixels in any region Ωi having ki pix-

els is performed as follows. First determine the prediction

value Î(xt, yt) for each pixel (xt, yt) in the region, with t =
1, . . . , ki. We define the residuals ǫ(xt, yt) = I(xt, yt) −
Î(xt, yt) for all pixels (xt, yt) ∈ Ωi. In the next step we quan-

tize the prediction residuals ǫ(xt, yt) using uniform quantiza-

tion. Same as in [7], the quantizer is defined as:

Q(ǫ) = sign(ǫ)

⌊

|ǫ|+ η

2η + 1

⌋

,

where the signum function returns 1 for positive argument,

−1 for negative and 0 for 0 argument. The reconstructed

value, used also by the encoder, is obtained as follows:

Ĩ = Î +Q′(ǫ) · (2η + 1),

where the reconstruction level is biased from the midpoint

of the quantization interval towards zero, to account for the

typical monotonic decreasing pdf of the absolute value of the

residual:

Q′(ǫ) = Q(ǫ)−
sign(Q(ǫ)) · µ(η)

2η + 1
.

The tests showed that the best results are obtained for the

bias term corresponding to µ(η) = η.

In the next stage we determine the minimum and max-

imum quantized residuals, denoted by mi and Mi for each

Ωi ∈ I and encode them along with all auxiliary informa-

tion. We form a stream of symbols by concatenating the

shifted residuals ε′(xt, yt) = Q(ǫ(xt, yt)) − mi for all re-

gions and encode it by applying adaptive Markov arithmetic

coding with order one. Like in [1], for a better compression,

when a shifted quantized residual ε′(xt, yt) is larger than an

optimally determined value, MRes, we encode the sequence

{MRes, s, r}, where s and r are the quotient and remainder

of the division
ε′(xt,yt)
MRes

, respectively.

3.5. Encoding of region contours

The segmentation of an image is defined by contours sepa-

rating the regions. The contour is transmitted using the 3OT

chain-code representation [8].

From the five options presented in [1], option four ob-

tained the best results in our tests. For other images the opti-

mal option could be any other. The fourth option was encod-

ing the chain code by applying the Arithmetic Coding Algo-

rithm using the optimal context tree obtained by the Context

Tree Algorithm [8]. Depending on the required bitstream, the

algorithm generates a specific segmentation which has a dif-

ferent contour. For each segmentation we usually obtain a

different tree-depth for the context tree: a height tree-depth

(18 ÷ 20) for high bitrate (almost lossless), and a lower tree-

depth (14÷ 16) for low bitrate, see column 5 of Table 2.

3.6. Summary of the algorithm

The segmentation algorithm implemented, denoted Lossy

Constrained Region Segmentation (L-CRS), can be summa-

rized in a few steps:

1. Smooth the contour by eliminating some edges be-

tween pixels with similar values as follows: if at least

3 neighbors in N4(xt, yt) have the same depth value,

v, and if |I(xt, yt)− v| ≤ 2, then set I(x, y) = v;

2. Determine the connected sets of pixels having variabil-

ity λ = 0 (thus having constant depth);

3. Select the sets of pixels with cardinality larger than K2

and declare them regions; out of the remaining pixels,

determine connected sets of pixels having variability at

most λ = 1 and having the maximum number of dis-

tinct depth-values γ = 2;
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4. Select the sets of pixels with cardinality larger than N1

and declare them regions; out of the remaining pixels,

determine connected sets of pixels having variability at

most λ = 1;

5. Similar to (3), but with cardinality larger than N3 =
100 and using variability λ = 3;

6. Declare the remaining connected sets of pixels regions;

7. Set pixel regions with size smaller than 5 pixels with

the depth level of the biggest neighboring region;

8. Encode the region contours using 3OT chain-codes;

9. Quantize and encode the regions with almost constant

depth, using T3 = 50 (T3 = 45 if low bitrate = 1);

10. For the remaining regions use the near-lossless predic-

tive compression as explained in Sections 3.3 and 3.4.

Besides the fixed parameters, having the value specified

in the algorithm, the values of the parameters M2 and N1 are

the most important and have to be chosen according to the

desired bitrate. Both of them can take values from 50 to the

size of the biggest region in the image. For example to obtain

a compression with a large PSNR, one can set M2 = 50,

N1 = 50 and use eta = 0, so that only a few regions contains

distortion, while for a low bitrate one can set low bitrate =
1, M2 = 1000, N1 = 14000 and use eta = 2.

For a near-lossless compression, meaning that the abso-

lute value of the error is smaller or equal than 2η + 1, we in-

troduced another method, denoted Near-Lossless Constrained

Region Segmentation (NL-CRS), using the same algorithm as

L-CRS with the difference that we eliminate step (7).

3.7. Experimental results

The segmentation algorithm is illustrated by presenting the

segmentation result in Figure 1 (b) for the depth image from

Figure 1 (a). We note that the image is oversegmented, in the

sense that the meaningful objects are split into many regions,

since this split is optimal for our rate-distortion optimization

scheme.

We present the results in a rate-PSNR plot, where the bi-

trate is calculated as bits per pixel (bpp),

bpp = 8 ·
compreesed file size

initial file size
,

and the peak signal-to-noise ratio, PSNR, is computed as:

PSNR = 10 · log10
2552

MSE
.

We compared the results for the two methods introduced,

L-CRS and NL-CRS, with JPEG2000 and the two other meth-

ods from [4] and [5], denoted here Method 1 and Method 2.

Figure 2 shows the results for the five methods using one im-

age from the Breakdancing sequence. One can see that our

(a) Initial depth image

(b) Obtained segmentation

Fig. 1. Example of segmentation for a low bitrate of first

frame of view 1 of Breakdancing sequence.

methods obtain better results compared with the best existing

results, Method 1 [4]. Because L-CRS is generated from a

lossless method, the transition from lossless to lossy is steep.

Another factor is that the bitrate has two parts: we compressed

losslessly the region contours and lossy the depth-levels in-

side the regions, that is why for a low bitrate the results will

asymptotically reach the point where most of the bitrate will

be composed of contour lossless bitrate.

Figure 2 presents also the result of lossless compression

using the more complex algorithm from [1]. The result is

presented using a vertical asymptote at bitrate = 0.3933 bpp,

which is the point where PSNR = ∞.

In Table 2 we take a closer look at some statistics of the

segmentation and the proportions of bitrates needed for loss-

less compression of contours and lossy compression of depth

values for 8 functioning points from the L-CRS curve pre-
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Image Segmentation Q. LP Contour comp. Depth-level comp. L-CRS

Nr. low final nr. contour maximum η bitrate % of bitrate % of Total PSNR

bitrate of reg. length tree-depth (bpp) total (bpp) total bitrate (db)

1 0 2575 142949 18 0 461 0.2265 64.48 0.1248 35.52 0.3513 61.9048

2 0 1635 140289 20 1 579 0.2223 82.80 0.0462 17.20 0.2685 57.9007

3 0 1483 134155 20 1 568 0.2120 84.39 0.0392 15.61 0.2512 56.9242

4 0 1269 124382 18 1 474 0.1957 84.86 0.0349 15.14 0.2307 55.3445

5 0 1133 112289 18 2 477 0.1775 88.31 0.0235 11.67 0.2010 53.1608

6 1 598 80145 18 1 193 0.1223 91.37 0.0116 8.63 0.1339 48.2914

7 1 536 70201 18 1 147 0.1078 92.52 0.0087 7.48 0.1166 46.7343

8 1 432 62313 17 3 147 0.0952 93.19 0.0070 6.81 0.1022 45.0466

Table 2. Examples of functioning points on the L-CRS curve from the rate-PSNR plot, with their details regarding the segmen-

tation, the quantization, and the lossy and lossless composition of compressed image. The size of the images is 1024× 768 and

has 6690 initial constant regions.
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Method 2 [5]

JPEG 2000
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Lossless compression
  Bitrate = 0.3933 bpp

Fig. 2. Lossy depth image compression comparison of our

two implemented methods, L-CRS and NL-CRS, with JPEG

2000 and the two methods from [4] and [5], for the first frame

of view 1 (camera 0) of the Breakdancing sequence.

sented in Figure 2. The table presents also the number of

pixels, denoted lossy pixels (LP), for which we do not im-

pose a near-lossless compression which means that the abso-

lute value between initial depth-level and the reconstructed

value is greater than 2η + 1.

In Figure 1 (b) we presented the segmentation obtained

for the 6th point in Table 2. One can see that some of the 598

final regions are very small, especially in the bottom of the

image. The final segmentation contains these regions because

the depth has a great variation in this area and putting them

together produces worse results, by increasing significantly

the distortion, with just a small decrease of the bitrate.
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