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ABSTRACT

In this paper, we propose a novel scheme for single-group

multicasting using a relay network. We assume a source that

transmits messages via an amplify-and-forward relay net-

work to multiple destinations. The goal is to minimize the

maximum transmitted power of the relays under constraints

on the signal-to-noise ratios at the destinations. To increase

the degrees of freedoms in the system, the relays process two

source signals jointly, using two different relay beamform-

ing weight vectors. The Alamouti space-time block code is

transmitted over two beams. Simulation results demonstrate

the performance of the proposed scheme combined with a

proposed sequential convex programming algorithm com-

pared to methods of the literature and to the theoretical lower

bound.

Index Terms— Amplify-and-forward, convex optimiza-

tion, relay networks, distributed beamforming, multicasting,

space-time block coding.

1. INTRODUCTION

In wireless networks, multicasting is an attractive approach

to avoid exhaustive individual transmissions if several users

demand the same data. In [1], an array of antennas has been

considered to transmit common data to a group of destina-

tions. To apply the transmit beamforming technique of the

latter work, full knowledge of the channel state information

(CSI) is needed at the transmitter. However, the knowledge

of the CSI at the transmitter requires a feedback channel from

the receivers to the transmitter [1]. An attractive alternative

to beamforming are space-time coding techniques since they

only require the CSI at the receiver [2]. Recently, in two in-

dependent works [3] and [4] rank-two transmit beamform-

ing techniques have been proposed which combine downlink

beamforming for multicasting and space-time block coding

(STBC) with the aim to increase the degrees of freedom in

the beamforming design.

In this work, a network of half-duplex relays is used to

create a beamforming system. In contrast to the conventional
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beamforming system which consists of a connected array of

antennas, the latter distributed system consists of separated

relays which forward messages [5]. Such a distributed beam-

forming system has been recently adapted to multicasting [6].

In the latter two-phase scheme the relays forward the data of

multiple sources received in the first phase to multiple groups

of destinations in the second phase. In [5]-[7], the relays

operate according to the simple amplify-and-forward (AF)

protocol, in which each relay transmits a phase adjusted and

scaled version of its received signal.

Here, we propose a four-phase single-group AF multicas-

ting scheme (AFMS) which can be regarded as an adaptation

of the transmit beamforming technique of [3] and [4] to a

distributed beamforming system or as a generalization of the

two-phase scheme of [6]. A single source transmits two data

symbols in the first two phases. In the third and the fourth

phase, the relays transmit different combinations of their re-

ceived signals, using two different beamforming weight vec-

tors such that two channels from the source to the destinations

are created. The destinations decode their received signals

similarly to a scenario where a transmitter applies Alamouti’s

STBC using two antennas and sending messages to a single

antenna receiver. We design the beamforming weight vec-

tors to minimize the largest individual relay power subject to

constraints on the signal-to-noise ratios (SNRs) at the destina-

tions. It is shown that the semidefinite relaxation (SDR) prob-

lem of the latter non-convex optimization problem is equiva-

lent to the SDR problem of a conventional AFMS. However,

the SDR relaxation to the optimization problem for the Alam-

outi coding based AFMS is tight if there exists a rank-one or

rank-two solution, whereas for the scheme of [6], the relax-

ation is only tight if there exists a rank-one solution. For a

practical implementation, we propose an iterative sequential

convex programming algorithm to compute the relay weight

vector. The algorithm is based on a convex inner approxima-

tion to the originally non-convex optimization problem to find

the optimal relay weights. As the latter algorithm requires a

feasible start vector which satisfies the SNR constraints, we

propose a feasibility search algorithm.

The simulation results demonstrate the performance of

the proposed scheme combined with the proposed algorithms

compared to the techniques proposed in the literature.
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Notation: E{·}, | · |, tr(·), (·)∗, (·)T , ℜ{·} and (·)H de-

note the statistical expectation, absolute value of a complex

number, trace of a matrix, complex conjugate, transpose, real

part operator and Hermitian transpose, respectively. Y � 0
means that Y is a positive semidefinite matrix. diag(a) de-
notes a diagonal matrix, with the entries of the vector a on its

diagonal, 0 is the vector containing zeros in all entries and I

denotes the identity matrix. x ∼ N (a,Y)means that x is cir-

cularly symmetric complex Gaussian distributed with mean a

and covariance matrix Y. rank(Y) denotes the rank of the

matrixY.

2. SYSTEM MODEL

source relays destinations

f

g1
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Fig. 1. Multicasting via a relay network.

Let us consider a wireless network where R relays for-

ward the messages transmitted by a single source to M des-

tinations. The source, the relays and the destinations con-

sist of single antenna devices, see Fig. 1. We assume that

there is no direct link from the source to the destinations

and the communication can only be accomplished via the re-

lays. In the first and the second time slot, the source trans-

mits the data symbols s1 and s∗2, respectively. The vectors

x1 = [x1,1, . . . , x1,R]
T and x2 = [x2,1, . . . , x2,R]

T of re-

ceived signals of the relays are given by

x1 , fs1 + η1, x2 , fs∗2 + η2 (1)

where f , [f1, . . . , fR]
T is the R × 1 vector, contain-

ing the complex coefficients {fr}
R
r=1 of the frequency flat

channels from the source to the relays and where η1 =
[η1,1, . . . , η1,R]

T and η2 = [η2,1, . . . , η2,R]
T are the R × 1

vectors of the relay noise of the first and the second time

slot, respectively. We assume that there is one node in the

network that has full knowledge of all the channels which

computes the relay weight vectors. We consider a block fad-

ing model in which all considered channel coefficients are

constant over four time slots. We make furthermore the prac-

tical assumptions that all noise processes in the network are

spatially and temporally uncorrelated and η1 ∼ N (0, σ2
ηI)

and η2 ∼ N (0, σ2
ηI), where σ2

η is the power of the noise

at the relays. In this work we consider a similar idea re-

cently proposed independently in [3] and [4] in the context

of conventional multicasting beamforming. The vectors

t3 = [t3,1, . . . , t3,R]
T and t4 = [t4,1, . . . , t4,R]

T of the sig-

nals transmitted by the relays in the third and fourth time slot,

respectively, can be expressed as

t3 , W1x1 +W2x
∗
2, t4 , −W2x

∗
1 +W1x2, (2)

where W1 , diag(wH
1 ), W2 , diag(wH

2 ) and w1 =
[w1,1, . . . , w1,R]

T and w2 = [w2,1, . . . , w2,R]
T are the com-

plex beamforming weight vectors. In the special case w2 =
0, the relays transmit their received signals separately. Af-

ter changing the order of the phases, w2 = 0 leads to the

scheme of [6] where each symbol is communicated in two

phases where in the first phase the source sends the signal to

the relays and in the second phase the relays forward their re-

ceived signals to the destinations. In the remainder we will re-

fer to the scheme of [6] as the conventional AFMS. Note that

the number of phases per transmitted data symbol is two for

the conventional AFMS (w2 = 0) and the herein proposed

AFMS (w2 6= 0). However, due to the additional weight vec-

tor w2, the proposed scheme offers more degrees of freedom

in the beamformer design.

At the ith destination, the received signals of the third and
fourth time slots can be written as

yi,3 , gT
i t3 + νi,3, yi,4 , gT

i t4 + νi,4, (3)

where gi = [gi,1, . . . , gi,R]
T is the R × 1 complex vector of

the frequency flat channels in between the relays and the ith
destination, and νi,3 and νi,4 are the received noise at the ith
destination in the third and fourth time slot, respectively, hav-

ing the power E{|νi,3|
2} = E{|νi,4|

2} , σ2
ν . The received

signals can be written in compact vector form as

yi = His+ ni (4)

where yi , [yi,3, y
∗
i,4]

T , s , [s1, s2]
T ,

Hi ,

[

hi,1 hi,2

−h∗
i,2 h∗

i,1

]

=

[

wH
1 Gif wH

2 Gif
∗

−(wH
2 Gif

∗)∗ (wH
1 Gif)

∗

]

, (5)

ni ,

[

ni,1

ni,2

]

=

[

wH
1 Giη1 +wH

2 Giη
∗
2 + νi,3

−wT
2 G

H
i η1 +wT

1 G
H
i η

∗
2 + ν∗i,4

]

, (6)

whereGi,diag(gi). For the received noiseni ∼ N
(

0, σ2
i I
)

holds true, where

σ2
i , σ2

η(w
H
1 Giw1 +wH

2 Giw2) + σ2
ν (7)

and where Gi , GiG
H
i = diag([|gi,1|2, . . . , |gi,R|2]). The

matrixHi enjoys the unitary property

HH
i Hi = (|hi,1|

2 + |hi,2|
2)I. (8)

We remark that the resulting system model in (4) corresponds

to the channel model of a 2 × 1 MISO system with channel

gains hi,1 = wH
1 Gif and hi,2 = wH

2 Gif
∗ where the Alam-

outi STBC is applied over consecutive time slots.
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Applying standard linear detection techniques for orthog-

onal STBC systems the signal at the ith destination can be

estimated as

ŝi =
HH

i yi

‖hi‖2
(4),(8)
= s+

HH
i ni

‖hi‖2
, (9)

where ŝi ∼ N (s,
σ2

i

‖hi‖2 I).

The equivalent channel matrix Hi in (9) can be com-

puted according to (5) at the ith destination if gi is estimated

there and if f , w1 and w2 are broadcasted to all the destina-

tions. Alternatively, the coefficients hi,1 and hi,2 can be es-

timated at each destination if the source transmits pilot sym-

bols which are weighted byHi according to (4).

From (9) we obtain that the SNR at the ith destination for
the kth symbol with the power E{|sk|

2} = P , k ∈ {1, 2}, is
given by

SNRi=
E{|sk|2}‖hi‖2

σ2
i

(5),(7)
=

P |wH
1 Gif |2 + P |wH

2 Gif
∗|2

σ2
η(w

H
1 Giw1+wH

2 Giw2)+σ2
ν

.

(10)

Note that the SNR is the same for both received signals.

3. RELAY POWER MINIMIZATION

In this section, we aim to design the beamforming weight

vectors. We consider the practical problem to minimize the

highest individually transmitted power of the relays while

maintaining a minimum SNR at each destination. The au-

thors of [6] considered the conventional single and multi-

group AFMS and proposed to minimize the total power of

all the relays subject to constraints on the SNRs at the des-

tinations. However, the drawback of this approach is that it

may lead to a high power consumption at some of the relays.

Here we consider a more practical approach and formu-

late the problem as

min
w1,w2

max
r∈{1,...,R}

pr s.t. SNRi ≥ γi, ∀i ∈ {1, . . . ,M} (11)

where γi is the threshold value for SNR of the ith destination
and where pr is the power transmitted by the the rth relay in

one time slot.

The power pr consumed at the rth relay in the third time

slot can be expressed as

pr = E{|t3,r|
2}

(1),(2)
=

(

|wr,1|
2 + |wr,2|

2
)

(P |fr|
2 + σ2

η)

= wH
1 Drw1 +wH

2 Drw2 (12)

whereDr is a matrix, having P |fr|2 + σ2
η as its rth diagonal

entry and zeros elsewhere. Note that the relay power con-

sumed in the fourth time slot is also given by (12). Therefore,

in (11), it is not necessary to specify whether the power trans-

mitted in the third or the power transmitted in the fourth time

slot is considered .

Introducing a slack variable t and using the definitions

Qi,1 , PGif f
HGH

i and Qi,2 , PGif
∗fTGH

i we rewrite

(11) into

min
t,w1,w2

t s.t. t ≥ wH
1 Drw1 +wH

2 Drw2, ∀r ∈ {1, . . . , R},

γi
(

σ2
ηw

H
1 Giw1+σ2

ηw
H
2 Giw2+σ2

ν

)

≤wH
1 Qi,1w1

+wH
2 Qi,2w2, ∀i ∈ {1, . . . ,M}. (13)

Problem (13) is difficult to solve directly as the SNR con-

straints are non-convex. Note that the optimum value of (13)

will be smaller or equal to the optimum value for the corre-

sponding problem for a conventional AFMS, given as a spe-

cial case of (13) where w2 = 0 is fixed.

In the remainder of this section, we derive similar re-

sults as [3] and [4], showing that the proposed Alamouti cod-

ing based AFMS enables rank-two beamforming. In subsec-

tion 3.2 we propose an iterative algorithm to approximately

solve (13). To initialize the algorithm of subsection 3.2, we

develop a feasibility search algorithm in subsection 3.3.

3.1. Outer Approximation

To compare the conventional AFMS with the proposed

Alamouti coding based AFMS in this subsection, let us

introduce the unitary transformation w̃2 = Aw2, where

A = diag([e2jφ1,, . . . , e2jφR,]) and where φr is the phase of

fr = |fr|ejφr . One can verify that wH
2 Drw2 = w̃H

2 Drw̃2

and wH
2 Giw2 = w̃H

2 Giw̃2 hold true since Dr and Gi are

diagonal matrices. Moreover

wH
2 Qi,2w2=w̃H

2 Qi,1w̃2

can be found, using the definitions of Qi,1 and Qi,2. Let us

define X1,w1w
H
1 and X̃2,w̃2w̃

H
2 to approximate (13) as

min
t,X1,X̃2

t s.t. t ≥ tr
(

(X1 + X̃2)Dr

)

, ∀r ∈ {1, . . . , R},

γiσ
2
η · tr

(

(X1 + X̃2)Gi

)

+ γiσ
2
ν

≤ tr
(

(X1 + X̃2)Qi,1

)

, ∀i ∈ {1, . . . ,M},

X1 � 0, X̃2 � 0, (14)

where the constraints rank(X1) = 1 and rank(X2) = 1
are neglected. Dropping rank constraints is referred to as

SDR and has been used in [1], [3] and [4] to derive a convex

outer approximation of non-convex quadratically constrained

quadratic optimization problems. The optimum value of (14)

is in general, however, only a lower bound for the optimum

value of the original problem (13) as the corresponding solu-

tion matrices of (14) might have an arbitrary rank.

Theorem. The optimum value of (14) is the same as the opti-

mum value of the corresponding problem of the conventional

AFMS proposed in [6].

Proof. The conventional scheme is a special case of the pro-

posed scheme, wherew1 is the only weight vector asw2 = 0.
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Consequently, the SDR version of the problem for the con-

ventional AFMS to minimize the maximum individual relay

power subject to constraints on the SNR of the destinations is

given as a special case of problem (14) where X̃2 is a matrix

containing zeros in all entries. However, it could be easily

seen that neglecting X̃2 will not change the optimum value

of (14).

In the case of a conventional AFMS, the SDR approxi-

mation is only tight if there is a solution matrix X⋆
1 which

is of rank one which implies that there is a vector w such

that X⋆
1 = wwH and w is a solution to the original prob-

lem of minimizing the maximum individual relay power for a

conventional AFMS. If the sum of the matrices of a solution

pair (X∗
1,X

⋆
2) to (14) is of rank two, there are two vectors

w1 and w̃2 such that X⋆
1 +X⋆

2 = w1w
H
1 + w̃2w̃

H
2 and the

pair (w1,A
−1w̃2) is a solution to (13). Due to the increased

number of degrees of freedom of the Alamouti coding based

AFMS, rank-two solutions of (14) are feasible for (13).

3.2. Inner Approximation

In practice, however, the rank of the sum of the solution ma-

trices to (14) might be of arbitrary rank, hence of rank larger

than two. In [1], [3] and [4], randomization methods have

been applied for a problem similar to (14) to generate fea-

sible points, which are however suboptimal, in general, and

often do not succeed in providing feasible solutions to the

original problem. Recently, iterative algorithms have been

developed which outperform the SDR-based randomization

algorithms in terms of performance and computational com-

plexity [6],[7]. Here, we propose an iterative linearization

technique to minimize the maximum individual power at the

relays which results in a convex inner approximation of the

SNR constraints

γi
(

σ2
ηw

H
1 Giw1+σ2

ηw
H
2 Giw2+σ2

ν

)

≤wH
1Qi,1w1+wH

2 Qi,2w2

(15)

in (13). The constraints (15) are non-convex due to the posi-

tive semidefinite quadratic forms on the right hand side of the

inequalities. We introduce a convex approximation for (13)

around the feasible vector pair (w
(p)
1 ,w

(p)
2 ), in the pth itera-

tion. Later in section 3.3, we discuss how feasible vectors for

problem (13) can be obtained. Let us define ∆w1 and ∆w2

as incremental updates forw1 andw2 aroundw
(p)
1 andw

(p)
2 ,

respectively. Thus, after the substitutionsw1 = w
(p)
1 +∆w1

and w2 = w
(p)
2 +∆w2 in problem (13), the objective func-

tion t and the power constraints are convex in∆w1 and∆w2.

We approximate the non-convex constraints in (15) as

γiσ
2
η

2
∑

k=1

(w
(p)
k +∆wk)

HGi(w
(p)
k +∆wk) + γiσ

2
ν

≤
2

∑

k=1

(

w
(p)H
k Qi,kw

(p)
k + 2ℜ

{

∆wH
k Qi,kw

(p)
k

})

, (16)

where we neglect∆wH
1 Qi,1∆w1 and∆wH

2 Qi,2∆w2 on the

right side of the inequality constraints. The latter terms are

always non-negative due to the positive semidefinite matrices

Qi,1 and Qi,2. Therefore, omitting these terms results in a

convex inner approximation of the feasible set of (13).

min
t,∆w1,∆w2

t s.t. t ≥ (w
(p)
1 +∆w1)

HDr(w
(p)
1 +∆w1)

+ (w
(p)
2 +∆w2)

HDr(w
(p)
2 +∆w2), ∀r,

∆w1,∆w2 satisfy (16) ∀i. (17)

Problem (17) can therefore be regarded as convex approxima-

tion of problem (13). Let the pair (∆w1,∆w2) be a solution
of (17) leading to a maximum individual power t(p). We up-

date the weight vectors according to

w
(p+1)
1 , w

(p)
1 +∆w1, w

(p+1)
2 , w

(p)
2 +∆w2. (18)

Then, the solution to (13) with the starting point

(w
(p+1)
1 ,w

(p+1)
2 ) yields a maximum power t(p+1) ≤ t(p)

due to the fact that ∆w1 = 0 and ∆w2 = 0 are feasi-

ble for (17) and result in a maximum individual relay power

t(p+1) = t(p). Therefore, repeatedly solving (17) generates

a sequence of weight vectors which result in a monotonically

decreasing sequence of maximum individual relay powers.

As the convex problem (17) is solved in each iteration, the al-

gorithm belongs the class of sequential convex programming

algorithms.

In our simulations, the iteration is terminated if the rela-

tive progress (t(p) − t(p−1))/t(p−1) is smaller than ǫ.

3.3. Feasibility Search

In contrast to the conventional transmit beamforming scheme

of [1], it is non-trivial to find a feasible solution which sat-

isfies the SNR constraints of problem (13) due to the noise

amplification at the relays. Let at iteration p = 0 w
(0)
1 and

w
(0)
2 be arbitrary initialization vectors. Due to the approx-

imation made in (16), the problem (17) might be infeasible

for w
(0)
1 and w

(0)
2 , even if feasible solutions for the original

problem (13) exist. To find feasible initial vectors for the al-

gorithm developed in subsection 3.2, we propose an iterative

algorithm, similar to the iterative algorithms of [6] and [7].

We insert a variable z in the constraints (16) where z guaran-

tees that these constraints can always be fulfilled. To find a

parameter set (w
(p)
1 ,w

(p)
2 , z) with z ≤ 0 which implies that

feasible vectors for (17) exist, we solve the problem

min
z,

∆w1,∆w2

z s.t. ρ ≥ ‖∆w1 +w
(p)
1 ‖2 + ‖∆w2 +w

(p)
2 ‖2,

γiσ
2
η

2
∑

k=1

(w
(p)
k +∆wk)

HGi(w
(p)
k +∆wk)+γiσ

2
ν

≤
2

∑

k=1

(

w
(p)H
k Qi,kw

(p)
k +2ℜ

{

∆wH
k Qi,kw

(p)
k

})

+z, ∀i ∈ {1, . . . ,M}, (19)
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where ρ is a large number which bounds the norm of the

weight vectors to avoid numerical difficulties for a solver.

It can be shown that iteratively solving (19) and updating

the weight vectors according to (18) creates a monotonically

decreasing sequence of values z(p). The latter search proce-

dure is terminated if z(p) ≤ 0 and consequently w
(p+1)
1 and

w
(p+1)
2 are feasible for (13). To stop an unsuccessful search,

it is useful to select a predefined number pmax of maximum

iterations. The iterative search for feasible solutions can fur-

ther be enhanced if different weight vectors w
(0)
1 and w

(0)
2

are used in the initialization.

4. SIMULATION RESULTS

In our simulations, we consider the scenario of frequency flat

fading channels from the source to R = 10 relays and from

the relays to the destinations. The channels are drawn from a

complex circularly Gaussian distribution with zero mean and

unit variance. We set the noise powers σ2
ν = σ2

η = 1 and the

source transmit power P = 10 dB over the noise level. We

set the threshold values γi = 6dB for all i ∈ {1, . . . ,M} and
average our results over 300 simulation runs.

For our proposed iterative algorithm of section 3.2, we

set the threshold value ǫ = 10−3, the number of start vec-

tors for the feasibility search algorithm of subsection 3.3 to

5 with a maximum number of pmax = 3 iterations per start

vector and ρ = 106. We compare the performance of the

proposed Alamouti coding based AFMS combined with the

proposed iterative algorithm to the theoretical lower bound

obtained by the SDR solution of (14), to the Alamouti coding

based AFMS combined with the SDR-based rank-two ran-

domization of [4], the conventional AFMS combined with

the proposed iterative algorithm and the SDR-based rank-one

randomization of [1]. Additionally, we consider the maxi-

mum individual relay power for the case that the objective

for the Alamouti coding based AFMS is to minimize the total

power consumption of the relays under constraints on the re-

ceived SNRs. To compute the relay weights in the latter case,

we slightly modified our proposed iterative algorithm.

Fig. 2 depicts the maximum individually consumed relay

power and the percentage of infeasible simulation runs ver-

sus the number of the destinations. In Fig. 2, in the plot which

depicts the maximum individually consumed relay power, we

have removed the points for constellations for which no fea-

sible solution has been found in more than 3% of the simula-

tions runs.

5. CONCLUSION

In this paper, a novel Alamouti coding based AFMS for

single-group multicasting has been proposed. To minimize

the individually consumed relay power, iterative algorithms

have been developed. The simulation results demonstrate that

the proposed Alamouti coding based AFMS combined with

the proposed iterative algorithms yields the best performance
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Fig. 2. Maximum individual relay power (top) and percent-

age of infeasible simulation runs (bottom) vs. number of des-

tinations.

in terms of feasibility and a low maximum individual relay

power compared to methods proposed in the literature. For a

small number of destinations, the maximum individual relay

power lies close to the theoretical bound.
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