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ABSTRACT

In this paper, we propose a sequential sampling approach

for estimating a parameter of interest of the distribution of

Y = f(X), where X has a known distribution in R
d and

f is an unknown, expensive-to-evaluate real-valued function.

We shall adopt a Bayesian point of view which consists in

modeling f as a sample of a well-chosen Gaussian process.

Our global approach aims at estimating the parameter of in-

terest with as few evaluations of f as possible. We compare

our methodology with standard approaches through numeri-

cal experiments and eventually test it on real data correspond-

ing to the exposure of a Japanese pregnant-woman model and

her 26-week-old fetus to a plane wave.

Index Terms— Sequential Design, Computer experi-

ment, Gaussian Process, Bayesian approach.

1. INTRODUCTION

Over the past 30 years, wireless communication systems have

been increasingly used. The number of mobile phones, WIFI

boxes, antennas, etc., is growing together with a strong public

concern over possible health problems related to the exposure

to radio frequency (RF) electromagnetic fields (EMF). In or-

der to tackle the issues raised by the human being exposure,

many studies are currently carried out: long-term epidemi-

ological studies, in vitro and in vivo studies, and numerical

dosimetry based methods. Here, we shall consider the latter

point of view to deal with the complex issue of fetuses ex-

posure to EMF throughout their development. We perform

numerical dosimetry simulations, virtually exposing pregnant

woman and fetus 3D-models to one source of EMF; one sim-

ulation yields one value of the (whole body) Specific Absorp-

tion Rate (SAR) in the fetus, which is an evaluation of the

rate at which energy is absorbed by the body of the fetus. As

the SAR depends on several parameters such as the morphol-

ogy and the posture of the mother and fetus, the position and

the type of the wireless device, we shall model the SAR by

Y = f(X), where f is an unknown real-valued function and

X is a random vector of Rd having a known distribution. Our

goal is to propose a method for estimating a parameter of in-

terest θ(f) of the unknown distribution of Y , which can be for

instance its mean, variance, the probability P(Y ≥ t) where

t is a given threshold, or a quantile. Since an evaluation of

f for a given x in R
d is very expensive in terms of compu-

tational load, we shall propose a sequential sampling strategy

where each computer trial is selected in order to estimate θ(f)
as accurately as possible by performing as few evaluations of

f as possible. For this, we shall adopt a Bayesian point of

view, using a Gaussian Process as a surrogate model for the

unknown function f ; this surrogate model enables us to op-

timize a criterion which selects the next evaluation point of

f . This framework has already been used in [1] and [2] to

provide a sequential approach for contour and P(Y ≥ t) es-

timation, respectively. Besides, [3], [4], [5], and references

therein have also used Bayesian methods for finding the max-

imum of f .

This paper is organized as follows: in Section 2, we de-

scribe our approach for estimating a parameter of interest of

the distribution of Y ; in Section 3, we test the methodol-

ogy for the estimation of a quantile of three analytic two-

dimensional functions and compare it with two other meth-

ods; eventually, in Section 4 we apply our methodology to

the assessment of the exposure of a 26-week-old fetus to a

plane wave through numerical dosimetry simulations.

2. DESCRIPTION OF THE METHOD

In this section, we shall explain our sequential sampling

strategy for estimating a parameter of interest of the distri-

bution of Y = f(X), where f is an unknown function and

X is for simplicity assumed to be uniformly distributed on

[0, 1]d. The method that we propose consists in adding one

by one the points of a fine grid X of [0, 1]d to the observation

set by using a Bayesian approach. It consists in consider-

ing f as a sample of a zero-mean Gaussian process having

a covariance function k that we shall denote in the sequel

GP(0, k(x, x′)). The advantage of this approach is that the

posterior distribution is still a GP such that, from a set of

observations yT = (Y1, . . . , YT )
′, the posterior mean µT (x)
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and covariance kT (x, x
′) are given by

µT (x) = kT (x)
′K−1

T yT , (1)

kT (x, x
′) = k(x, x′)− kT (x)

′K−1
T kT (x

′) , (2)

where kT (x) = [k(x1, x) . . . k(xT , x)]
′, x is in X , ′ de-

notes the matrix transposition and KT = [k(xi, xj)]1≤i,j≤T ,

see [6] and [3] for further details. As usual, we shall

take µT as an estimator of f based on the observations

{(X1, f(X1)), . . . , (XT , f(XT ))} = FT . For selecting a

new evaluation point of f , the idea is to use a myopic crite-

rion which minimizes the deviation from the “true” parameter

of interest θ(f) that we wish to estimate; so the new trial point

should be the one which, on average, lowers most the vari-

ance of θ(f) conditionally to the T previous observations.

So, the (T + 1)th point to add to the set FT is:

xT+1 = argmin
x∈X

VT (x) , (3)

where

VT (x) =

∫

Var(θ|F
(x,y)
T )ϕµT (x),σ2

T
(x)(y)dy , x ∈ X ,

with F
(x,y)
T = {(X1, f(X1)), . . . , (XT , f(XT )), (x, y)},

σ2
T (x) = kT (x, x) and ϕµT (x),σ2

T
(x) is the p.d.f. of a Gaus-

sian random variable with mean µT (x) and variance σ2
T (x).

This criterion is closed to one of the improvement-based ac-

quisition functions for Bayesian Optimization described in

[5] which has been studied in [7]. Observe that this strategy

corresponds to the so-called SUR criterion proposed by Bect

and al. in [2] in the case of the estimation of P(Y ≥ t) where

t is a given threshold.

The criterion (3) has a closed-form expression only in par-

ticular cases; for instance, when θ(f) = E(Y ). Otherwise,

the computation of (3) is more involved; this is pointed out

for instance in [2] for the case of the estimation of P(Y ≥ t).
In those situations where no closed-form formula for (3) is

available, we shall explain in Algorithm 1 how Monte-Carlo

simulations can be used to approximate (3). Note that a sim-

ilar algorithm has been proposed in [8] with another applica-

tion.

3. NUMERICAL EXPERIMENTS

In this section, we shall apply the methodology introduced in

Section 2 to the estimation of a α-quantile qα of the distri-

bution of Y = f(X), for three instances of two-dimensional

functions f ; qα is defined by:

P(f(X) ≤ qα) = α , α ∈ (0, 1) .

The first function we shall use is a Gaussian Process path,

sampled from a zero-mean GP with a squared exponential co-

Algorithm 1 Procedure for the estimation of θ(f)

Input: X , a fine grid of [0, 1]d, T0 a small

number of points of X where f is evaluated

{(X1, f(X1)), . . . , (XT0
, f(XT0

))} = FT0
, X0 =

(X1, . . . , XT0
).

Processing

1. Evaluate the posterior distribution of the GP denoted

ξT0
using (1) and (2)

2. Evaluate the estimation of θ(f) with the surrogate

model µT0

3. Evaluate the criterion

(a) Simulate N paths ξ
(1)
T0

, . . . , ξ
(N)
T0

of the GP ξT0

(b) For each point x ∈ X/ X0 evaluate the pos-

terior distribution of the GP ξ
T0

(x,ξi
T0

(x)) , i ∈

{1, . . . , N}, conditionally to the addition of

(x, ξiT0
(x)) to FT0

(c) Simulate N ′ paths ξ
(1)

T0
(x,ξi

T0
(x))

, . . . , ξ
(N ′)

T0
(x,ξi

T0
(x))

of the GP ξ
T0

(x,ξi
T0

(x)) , i ∈ {1, . . . , N}

(d) For each of those N ′ paths estimate

θ(ξ
(j)

T0
(x,ξi

T0
(x))

), j ∈ {1, . . . , N ′}, and the

empirical variance of θ(f) on these N ′ estima-

tions denoted by s
(i)
T (x)

(e) Evaluate the mean of the N empirical variances of

θ(f) : VT (x) = 1
N

∑N

i=1 s
(i)
T is the value of the

criterion for the points x of the grid x ∈ X/ X0

(f) Repeat steps (c), (d), (e) for each point x of the

grid x ∈ X/ X0

4. Select the point x for which VT (x) is minimal and per-

form an evaluation of f at this point

5. Add this new observation to the set of observations

6. Repeat all the steps until the maximal allowed number

of evaluation of f is reached

Output Estimator of θ(f)

variance function:

k(x, x′) = exp

(

−
(x− x′)2

2ℓ2

)

, x, x′ ∈ [0, 1]2 , ℓ = 0.1 .

(4)

The second function is the function used in [9], that we

shall refer to as Gramacy function:

f(x, y) = (8x− 2) exp(−(8x− 2)2 − (8y − 2)2) ,

(x, y) ∈ [0, 1]2 .
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The third function is the so-called Ishigami function (with

a fixed parameter to be two-dimensional), which is commonly

used in sensitivity analysis (see for instance [10]):

f(x, y) = sin(π(2x− 1)) + 7 sin(π(2y − 1))2

+ 0.1π4 × sin(π(2x− 1)) , (x, y) ∈ [0, 1]2 .

Those three functions are displayed in Figure 1.
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Fig. 1. 3D plots of the functions; (a) Gaussian Process path,

(b) Gramacy function and (c) Ishigami function.

In the following, our approach that we shall call GPquan-

tile is to be compared for each function with two other meth-

ods: one that we shall refer to as GPexplor, in which the point

of X to be added to a set of T observations is xT+1 defined

by

xT+1 = argmax
x∈X

σT (x) ,

where σT (x)
2 = kT (x, x) defined in (2). The idea here is to

reduce step by step the global incertitude on the estimation of

the function f . This criterion is introduced in [3] as a pure

exploration strategy, hence the name we use here. With this

approach, the quantile qα is estimated by

q̂α,GPexplor(T ) = (µT (X ))(⌈nα⌉) ,

where (µT (X ))(i) denotes the ith smallest value that µT takes

on the grid X . The other method, that we shall denote Ran-

dom, is a more naive approach which consists in randomly

adding a new point at each iteration and evaluating the quan-

tile at step T by

q̂α,Random(T ) = Y(⌈Tα⌉) .

Here we shall focus on the estimation of the 95% quantile

of Y , where X is uniformly distributed on [0, 1]2. For each

function, we consider as a reference value the estimation of

the quantile provided by all the n = 500 points of X ; this

value will be denoted q̂0.95 in the sequel. For the GP path,

q̂0.95 = 1.7678, for the Gramacy function q̂0.95 = 0.0870,

and for the Ishigami function q̂0.95 = 16.0579. We start

with a set X0 of T0 = 20 (T0 = 10 for the Ishigami func-

tion) points selected with a maximin LHS obtained with the

lhsdesign function of Matlab. This set is included in the

larger set X also obtained with a LHS.

Furthermore, to evaluate the criterion, we simulate N =
N ′ = 10 GP sample paths. The number N of Monte Carlo

may seem small, but this value yields satisfactory results as

we shall see.

In the contour plots of Figure 2, the contour lines of q̂0.95
and q̂0.95 ± 10% are drawn, and the different points as well

as their order of apparition are displayed. We can see that

the points added to the set are spread out in all the space

for the Gramacy function; on the contrary, most of the points

have been selected near from the quantile line for the Ishigami

function.

In Figure 3, the results are displayed through the relative

errors |q̂0.95 − q̂α,·(t)|/q̂0.95 at each iteration t, t = 1, . . . , 50
(t = 1, . . . , 30 for the Ishigami function) using the three pre-

vious approaches.. For the GP path, in this example the rela-

tive error is inferior to 5% after 18 iterations ; in other words,

we achieve a good precision on a value obtained with 500

observations using only 38 evaluations of the function. More-

over, the results with the Ishigami function are even better:

with a total of only 16 observations, the procedure yields an

estimator of q0.95 which has less than 1% error from the q̂0.95
estimated with 1000 evaluations of the real function. The re-

sults are less impressive for the Gramacy function, as we only

achieve a 15% relative error after 50 iterations (which corre-

sponds to 70 observations). However, our results are better

than the two other methods to which we compared GPquan-

tile. Those results are not really surprising, because the surro-

gate model of a classic GP seems to be too simple to estimate

the function displayed in Figure 1 (b); in [9], the authors use

a Bayesian treed Gaussian process as surrogate model, which

means that they select the best covariance function at each

iteration of the procedure.

3.1. Monte-carlo experiments

The comparison between the three methods is performed

through 50 Monte-Carlo replications (on the choice of the

sets X0) and the corresponding means of the relative errors

|q̂0.95 − q̂α,·(T )|/q̂0.95 at each iteration t, t = 1, . . . , 50
(t = 1, . . . , 30 for the Ishigami function) are displayed in

Figure 4 for each of the three approaches. We can see from

this figure that our approach outperforms the Random and the

GPexplor method.
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Fig. 2. Contours close to the quantile and chosen points in

order of inclusion in the set for (a) Gaussian Process Path, (b)

Gramacy function and (c) Ishigami function.
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Fig. 3. Relative errors at each iteration (for (a) Gaussian Pro-

cess Path, (b) Gramacy function and (c) Ishigami function).

GPquantile (black diamonds and plain line), GPexplor (dark

gray circles and dotted line) and Random (light gray crosses

and dotted line).

4. APPLICATION TO REAL DATA

In this section, we shall apply the methodology developed

in Section 2 to the estimation of the 95% quantile of the

SAR of a 26-week-old fetus. Our application is all the more

interesting since most of dosimetric studies are carried out

with deterministic approach, which means with one human

model in a given posture and one configuration of exposure

(such as a frontal incident plane wave). As it has been shown
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Fig. 4. Means of the relative errors at each iteration. GPquan-

tile (black diamonds and plain line), GPexplor (dark gray cir-

cles and dotted line) and Random (light gray crosses and dot-

ted line) for (a) GP path and (b) Ishigami function.

in [11] and [12], that morphology, posture and position of

the EMF source have an high influence on the exposure, the

JST-ANR Fetus project in which this work is included aims

at statistically analyzing the exposure of fetuses. We shall use

an anatomically realistic woman model corresponding to the

average dimensions of Japanese women, in which a 26-week-

old fetus model has been inserted (see [13] and references

therein); indeed, whole body pregnant woman models do not

exist, as medical data needed to build them is not always

available. In our application, the pregnant woman model

is exposed to 900 MHz vertically polarized electromagnetic

plane waves with a 1 Volt per meter amplitude.

The SAR (expressed in W/kg) of the fetus will be con-

sidered as a function of two parameters: the azimuth and the

elevation of the incident wave. The value of the SAR for a

given value of the azimuth and elevation is computed through

the Finite Difference in Time Domain (FDTD) method, which

is commonly used in the field of dosimetry, see for instance

[14], [11] and [15]. We performed 500 evaluations of the SAR

in the fetus, from a set of 20 points joint to a set of 480 points,

both obtained with the lhsdesign function of Matlab. The

results are displayed on the surface plot of Figure 5 (a). With

those 500 points, we evaluate the estimator of the quantile to

be used as a reference: q̂0.95 = 4.2204 × 10−4. Then, we

run the procedure starting with the T0 = 20 points of the

LHS design. In Figure 5 (b) the contour plot shows that the

points are picked in the area close to the quantile; the values

of the 95% quantile estimators at each iteration t obtained us-

ing the GPquantile are displayed in Table 1. We observe that

the value is stabilized at 4.2204 × 10−4 after 10 iterations,

which is exactly q̂0.95.

5. CONCLUSION

In this paper, we have developed a sequential sampling strat-

egy based on a Bayesian approach for estimating a parame-

ter of interest of the distribution of an expensive to evaluate

black-box function. Our method outperforms other strategies

when tested on synthetic examples, and yields very good re-

sults when applied to real data.
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Iteration (t) 1 2 3 4 5

q̂(t)× 104 3.4030 3.5877 3.8057 3.8057 4.0260

Iteration (t) 6 7 8 9 10

q̂(t)× 104 4.1687 4.1736 4.1991 4.2275 4.2204

Iteration (t) 15 20 30 40 50

q̂(t)× 104 4.2204 4.2204 4.2204 4.2204 4.2204

Table 1. The quantile estimators at the different iteration

steps.

0

0.5

1

0

0.5

1
1

2

3

4

5

(a)

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24
25

26

27

28

293031

32

33

34

35
36

37

38

39
40

41

42

43
44

45

46

47

48
49

50

51

52

53

54
55

56
57

58

59

60

61

62
63

64 65

66

67

68

69

70

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

(b) (c)

Fig. 5. (a) Contour plot, (b) selected points for the quantile

estimation and (c) relative errors at each iteration for the quan-

tile estimation.
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