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ABSTRACT

Human operators are active components of feedback control

systems. They are faced with challenges especially when the

system is unstable or when time delay affects the feedback

loop. In this study, the human operator is assumed to act

as a dynamical system, and its complexity and performance

is analyzed through the entropy rate of its generated output

command.

We investigated the characteristics of the human operator

when controlling an unstable system under different time de-

lays and higher degrees of task instability. The entropy rate

for dynamical systems, also called the Kolmogorov-Sinai en-

tropy, was estimated based on the numerical method proposed

by Grassberger and Procaccia.

Index Terms— Human-in-the-loop, Kolmogorov-Sinai

entropy, entropy estimation, correlation sum, time delay

1. INTRODUCTION

The performance of human operators as components of feed-

back control systems is an important factor in human-in-the-

loop (HIL) systems, especially when the controlled system is

unstable or when time delay is present in the feedback loop.

The human controller shown in Fig. 1 is expected to gen-

erate the sequence of commands u relative to the perceived

sensory input e in order to achieve the desired outcome y of

the closed-loop system. The human controller thus resembles

characteristics of a dynamical system.

The goal of this paper is to evaluate the performance of the

human controller by means of information exchange between

human and machine. The sequence of control movements is

assumed to be a time series generated by a dynamical system,

and its entropy rate is to be estimated as a measure of the abil-

ity of the human controller to convey information. This anal-

ysis can aid in the design of efficient HIL systems by identi-

fying the limitations of the human controller and matching its

capabilities to the task requirement.

This work was supported by the National Science Foundation (NSF) un-

der Grant CMMI-0953449.
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Fig. 1. HIL system: r - reference signal, u - human command,

d - disturbance related to manual control, y - output signal.

Introduced by Shannon [1] for communication channels

in what became information theory, the entropy rate was later

extended by Kolmogorov [2] and Sinai [3] to quantify the

complexity of dynamical systems. In this paper, the entropy

rate is interchangeable with information rate. If the signal

generated by the dynamical system follows some probability

distribution, and the transition between the observed numbers

is well-defined, then we can infer knowledge about the inter-

nal states of the system and their evolution over time. The in-

ternal states of the human sensory-motor system are very dif-

ficult, if not impossible, to determine. However, the entropy

rate seems to provide insight about both the average infor-

mation needed to encode a state with a certain accuracy, and

the quantity of information needed to predict future observa-

tions given past measurements. The analysis is also linked to

prediction abilities, because the entropy rate scales inversely

with the time scale of prediction.

Fitts [4] was the first to suggest quantifying the amount of

information of a movement (in bits) by its index of difficulty,

and measuring the time it takes to perform that movement (in

seconds). Then the human motor system was said to gener-

ate information at a rate measured in ”bits per second” when

carrying out that movement. The observed human control sig-

nal, similar to the observation of any dynamical system, can

convey information, and the entropy rate is the quantity that

measures the average amount of information generated per

unit time. Throughout our investigation the human controller

is regarded as an information generation source, and its per-

formance is assessed by its capacity to generate information

while performing a manual control task.
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2. METHODS

We characterize the human controller by estimating the en-

tropy rate of its control command u. This signal is in fact

a time series {u(kΔt)}Nk=1 because it is being recorded at a

fixed sampling period of Δt = 10 ms (i.e. 100 Hz). The

method used to estimate the entropy rate was developed by

Gaspard and Wang [5] based on the idea of Grassberger and

Procaccia [5, 6]. We refer to [7] as the main reference for the

entropy estimation from a time series.

The recorded time series of the human control signal was

obtained from an experiment where the human controller bal-

anced an inverted pendulum simulation. Various scenarios

were created by varying the pendulum length and including

different time delays in the HIL system.

2.1. Entropy rate estimation

Consider a dynamical system with an D-dimensional phase

space, and assume that the state of the system x(t) is mea-

sured at finite time intervals τ . If the phase space is covered

by a partition Pε, then the joint probability p(γ1, γ2, ..., γm)
is defined as the probability that the state of the system vis-

its successively the partition elements γ1, γ2, ..., γm at times

t, t+τ, ..., t+(m−1)τ . The the order-q Renyi block entropy

of block size m can be formulated as

Hq(m,Pε) =
1

1− q
log

∑

Pε

pq(γ1, γ2, ..., γm) (1)

where the log is taken in base 2 to measure the entropy in bits.

Then the order-q generalized entropies are

hq(m,Pε) = Hq(m+ 1,Pε)−Hq(m,Pε) =
Hq(m,Pε)

m

hq = sup
Pε

lim
m→∞hq(m,Pε) (2)

The Kolmogorov-Sinai entropy hKS is obtained by taking

the limit q → 1 in (2). As a measure of the order of the

system [5, 8], the entropy rate is able to asses the type of the

dynamical system:

• hKS = 0⇒ system is deterministic;

• hKS = ct �= 0⇒ system is deterministically chaotic;

• hKS →∞⇒ system is stochastic.

Computing hKS directly by taking the supremum over

all ε-size partitions (usually implies ε → 0) and the limit

m → ∞ is impractical for a finite-sample time series. In-

stead, Gaspard and Wang [9] suggested analyzing the entropy

rate hq(m, ε) based on its scaling with the resolution ε and the

block size m. They referred to it as coarse grained dynamical
entropy or ε-entropy per unit time. This method is said to be
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Fig. 2. Coarse grained entropy hq(m, ε) for a stochastic

signal (dotted line), deterministically chaotic signal (dashed

line), and deterministically chaotic with measurement noise

(solid line). The plateau for intermediate values of ε is esti-

mated to be hKS . Figure adapted from [7].

a generalization of hKS to stochastic systems because it con-

siders the length scale ε-dependence in (2) to reveal additional

information about the system.

The general shape of hq(m, ε) is shown in Fig. 2 for

different length scales ε. If ε is large then we have that

hq(m, ε) = 0, because the neighborhood size covers the

whole range of observables. For deterministically chaotic

systems (dashed curve), hq(m, ε) scales to a non-zero con-

stant for small values of ε and m sufficiently large. It was

shown [5, 6, 9] that this value is a good numerical approxi-

mation to the Kolmogorov-Sinai entropy: hq(m, ε) ≈ hKS .

For stochastic systems (or deterministic systems with m not

sufficiently large) we have that hq(m, ε) = − log ε + hc(m)
(dotted curve), where hc is a constant which represents the

continuous entropy rate [7]. Therefore, when ε → 0 the en-

tropy rate diverges: hq(m, ε) → ∞. For a deterministic sys-

tem with measurement noise (solid curve) hq(m, ε) exhibits a

plateau in an intermediate range of ε (when hq(m, ε) ≈ hKS)

and then scales like − log ε for ε→ 0.

Following the protocol of Grassberger and Procaccia [5],

we consider the case q = 2 in (2) due to its more conve-

nient and robust numerical computation. The relationship

between h2 and hKS is that h2 ≤ hKS , and they are both

non-negative. Moreover, h2 →∞ for stochastic systems and

h2 = ct �= 0 for chaotic systems, which implies that h2 > 0
is a sufficient condition for chaos.

The entropy rate h2(m, ε) can be defined in terms of the

correlation sum [5, 6]

h2(m, ε) =
1

τ
log

C(m, ε)

C(m+ 1, ε)
(3)

The correlation sum computes the probability that two states
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of the system at different times are closer than a threshold ε

C(ε) =
1

N(N − 1)

N∑

i=1

N∑

j �=i

Θ(ε− ||u(i)− u(j)||) (4)

where Θ(x) is the Heaviside step function: Θ(x) = 0 if

x ≤ 0, and Θ(x) = 1 if x > 0, and || · || is a norm. Notice

that the states of the system are not known to us, but instead

the scalar measurements {u(kΔt}Nk=1 are available. Because

our observables are only a projection of the internal states of

the system onto an interval on the real axis, a reconstruction

of the phase space is required. Takens’s delay embedding the-

orem [10] suggests that the evolution of the delay vector

u(k) = [u(k), u(k − τ), ..., u(k − (m− 1)τ ]T (5)

for k = (m−1)τ+1, ..., N , reflects the same dynamics of the

unknown state space (in the sense of mapping onto each other

by a uniquely invertible smooth map) for the embedding di-

mension m sufficiently large. The lag τ can be larger than the

sampling period Δt in order to avoid temporal correlation be-

tween samples. Consequently, the state of the original system

in (4) was substituted by its vector approximation u.

Thus, the computation of the entropy rate h2(m, ε) by us-

ing the correlation sum is very attractive because it requires

only the computation of the arithmetic average over the num-

ber of neighbors. Moreover, it was shown not to introduce

any bias in the estimation of the correlation sum due to finite

statistics [7].

The dependency of h2(m, ε) on the embedding dimension

m reveals important information about the dynamical system.

For the delay vector to resemble the same behavior as the

actual state of the system, an important requirement is that

m ≥ 2D, where D is the dimension of the attractor in the

phase space [10]. This is the necessary condition for what

we referred to earlier as m being “sufficiently large”. Fur-

thermore, the rate of convergence of m → ∞ is proven to

relate to the strength of correlations in the system [6], thus

providing an insight into the memory of the system. How-

ever, careful interpretation of the results for very large values

of m is required due to the finite-sample time series.

The estimation of the entropy rate h2(m, ε) was per-

formed by adapting the TISEAN software package from [7].

The time series was normalized to the interval [0, 1], and a

maximum embedding dimension of m = 10 was considered

sufficient using the false nearest neighbors algorithm. The

time delay τ from the delay vector (5) was estimated by deter-

mining the first minimum of the delayed mutual information

according to [7].

2.2. Human Manual Control of an Inverted Pendulum

The HIL system considered in our study involves a human

controller balancing a planar inverted pendulum simulation

using a joystick (Fig. 3(a)). An inherently unstable system is

L

θ

x

(a) (b)

Fig. 3. Inverted pendulum restricted in a plane. (a) Computer

simulation adapted from [11]. (b) Definition of variables: θ is

the angle deviation from the upright position; L is the pendu-

lum length; x is the applied displacement to the bottom tip of

the pendulum.

very relevant in human-machine interaction applications such

as rocket or missile guidance, piloting an unstable airplane,

and teleoperation where the system exhibits unstable behav-

ior.

The inverted pendulum system (Fig. 3(b)) considers the

control variable to be the displacement x applied to the bot-

tom tip of the pendulum. The output of the inverted pendulum

system is the angle θ which is to be held as small as possi-

ble. The linearized dynamics of the inverted pendulum sys-

tem yields two poles of which one is real and positive. This

unstable pole varies inversely with the length of the pendu-

lum: p =
√
3g/2L, where L is the length of the pendulum,

and g is the gravitational acceleration. Its magnitude reflects

the degree of instability of the system.

In order to apply the method for entropy rate estimation,

the time series must be stationary. Therefore, the time series

used for the computation is the velocity of the generated joy-

stick movements (the time derivative of the displacement x),

which is assumed to be stationary. It is common practice to

use increments or returns to render a stationary signal from a

non-stationary signal [7].

The performance of the human controller was analyzed

during two scenarios: (1) when introducing various amounts

of time delay in the feedback system, and (2) when changing

the degree of instability of the feedback system by varying

the pendulum length. For the former scenario a pendulum

length of 20 m was used for the following amounts of time

delay: 0, 200, 400, 600, 800, and 1000 ms. For the latter

scenario the pendulum length was changed to 6 m and 3 m

with no time delay. Ten trials were recorded for each time

delay and each pendulum length. The duration of a trial was

60 seconds, unless the human operator dropped the pendulum

which ended the trial.
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Fig. 4. Entropy rate estimation for (a) no time delay, (b)

200ms, (c) 400 ms, (d) 600 ms, (e) 800 ms, (f) 1000 ms time

delay. The curves correspond to the embedding dimensions

2-10 while m = 2 (circles) and m = 10 (stars) are empha-

sized.

3. RESULTS

The entropy rate h2(m, ε) as a function of the embedding di-

mension m and the neighborhood size ε is illustrated in Fig. 4

for different time delays, and in Fig. 5 for smaller pendu-

lum lengths. With increasing m, the entropy rate settles to

a plateau for smaller values of ε in all considered scenarios.

As mentioned earlier, this is an indication that the human con-

troller resembles characteristics of a deterministically chaotic

system.

The information rate of the control movements was ob-

served to decrease with the amount of time delay in the feed-

back loop and to increase for the shorter-length pendulum

(Fig. 6).

These results can be correlated with our previous work [12]

which showed that human operators have to adapt their con-

trol actions to low-frequency bandwidth movements in order

to maintain stability of the system as more time delay affects

the task. Therefore, the entropy rate as a measure of informa-

tion content per unit time carried by the control movements
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Fig. 5. Entropy rate estimation for shorter pendulum length:

(a) 6 m, (b) 3 m. The curves correspond to embedding di-

mensions 2-10 while m = 2 (circles) and m = 10 (stars) are

emphasized.
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Fig. 6. The variation of the estimated entropy rates with time

delay (above), and with pendulum length (below).

implies that the human controller is limited to generating

higher information-content movements when adapting to the

bandwidth constraint.

When the control task is made more difficult by decreas-

ing the pendulum length, the human operator is constrained

to generate higher frequency movements [12]. The estimated

entropy rate increased accordingly from 2.6 b/s for a pendu-

lum of 20 m to 4.7 b/s for a pendulum of 6 m. Thus, the

human operator was able to compensate for the degree of in-

stability of the task by delivering more information.

However, when the pendulum length was 3 m, the infor-

mation rate was observed to slightly decrease. This result

seems to imply that the human controller is not able to ramp

up the frequency of generating movements without sacrific-

ing the accuracy and the effectiveness of its control signal.

This aspect of manual control can be explained by signal-

dependent noise in motor control [13].
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4. DISCUSSION

The estimated entropy rate showed that the capability of the

human operator to generate information while performing a

control task in a HIL system is reduced with increasing time

delay in the feedback loop. Moreover, the human operator

was observed to adapt to the tasks with a higher degree of

instability by generating movements at a higher information

rate. However, results show that this capability reaches a limit

and even decreases after a certain degree of instability.

The idea that the information rate scales inversely with

the amount of time delay implies that the human movements

become more regular. The human controller apparently se-

lected its actions more carefully, most probably using its pre-

diction capabilities, under the challenge of time delay. Recent

work [14] has proven that there should be a minimum amount

of information flow in the feedback system to guarantee the

stability. This minimum information rate increases with the

degree of instability of the task according to p log2(e) b/s.

The limitation of the human controller can thus be predicted

when the estimated entropy rate approaches this lower bound.

The entropy rate was more difficult to estimate in the sit-

uations when the time delay was large (i.e. 600-1000 ms)

and when the length of the pendulum was very short (i.e. 3
m). The spurious spread of the curves in the entropy rate plot

may be caused by the fact that less data points were recorded

for these trials. Due to the increased difficulty to perform the

task, the human controller dropped the pendulum before the

60 seconds elapsed. It is important to acknowledge that this

method has its limitations when analyzing high dimensional

attractors at small length scales ε due to sparse data. It has

been suggested [7] that the minimum length of the time series

should satisfy Nmin > εD for a consistent result.

The information-rate analysis applies to any situation

when the human output is a time series. It is able to encode

the human controller’s accuracy in sensing the feedback sig-

nal, its ability to mentally process the command, and the limi-

tations of the muscles used in performing the task. Therefore,

information-rate analysis may be used as a general statistic to

measure human performance and predict its limitations.

5. CONCLUSIONS

This investigation analyzes human operator performance in a

HIL system from the perspective of a dynamical system by

estimating the entropy rate of its control signal.

The scaling of the entropy rate to a constant value sug-

gests that the human controller system resembles characteris-

tics of a deterministically chaotic system. The performance

of the human operator as an information source diminishes

with increasing time delay in the feedback system and with

increasing degree of task instability. These preliminary con-

clusions are to be investigated in the future on more human

subjects.
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