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ABSTRACT

Lattice Reduction (LR) is a promising technique to improve

the performance of linear MIMO detectors. However, LR-

aided linear hard output MIMO detection is still far from op-

timal. Practical systems use soft output information to exploit

gains from forward-error-correcting codes to achieve near-

optimal performance. In this paper, LR-aided Selective Span-

ning with Fast Enumeration (LR-SSFE) is proposed as a can-

didate list generation method for soft output MIMO detection.

The proposed algorithm uses heuristics based on simple arith-

metic operations, which results in a completely deterministic

and regular data flow. Hence, LR-SSFE can be efficiently

implemented on a parallel programmable architecture. LR-

SSFE is compared to the Fixed Candidates Algorithm (FCA)

in terms of performance and complexity, which is another

LR-aided candidate list generation method. Under the same

performance constraints LR-SSFE has a significantly lower

complexity than FCA.

1. INTRODUCTION

The optimal solution to the Multiple Input Multiple Out-

put (MIMO) detection problem is the Maximum a posteriori

(MAP) detector, however its complexity increases exponen-

tially with the number of antennas, and thus, suboptimal

methods have to be used in practice. The challenge is to have

MIMO detectors that can achieve performance comparable

to the MAP detector while having a lower complexity. Lin-

ear MIMO detectors, such as Zero Forcing (ZF) or Minimum

Mean Square Error (MMSE), are attractive choices for MIMO

detection due to their low computational cost. However, they

cannot efficiently remove the inter-stream interference and

suffer from noise amplification. LR-aided ZF/MMSE have

been proposed in [1] to improve the performance with sub-

optimal linear detectors. Although LR-aided linear MIMO

detection achieves the same diversity order as Maximum

Likelihood (ML), there still exists a gap between LR-aided

hardoutput MIMO detection and MAP, which can be reduced

further with soft-output MIMO detection techniques. It has

been shown in [2] and [3], that LR-aided soft output MIMO

detectors can achieve near optimal performance. The method

proposed in [4] uses the covariance matrix of the noise along

with a nearest-neighbor search method to reduce the com-

plexity of LR-aided soft output MIMO detection. However,

the complexity of these algorithms is still very high for prac-

tical implementation. Three soft output LR-aided MIMO

detection methods are proposed in [5]. The Fixed Candidates

Algorithm (FCA) and Fixed Radius Algorithm (FRA), are

based on the K-best and Sphere detection approaches, re-

spectively. FCA can be efficiently implemented on a ASIC.

However, its implementation on a parallel programmable ar-

chitecture will require extensive data shuffling and memory

rearrangement, which would result in low hardware resource

utilization.

In order to achieve near-MAP performance with LR-aided

soft output MIMO detection on a parallel programmable ar-

chitecture, we propose LR-aided SSFE (Selective Spanning

with Fast Enumeration). LR-SSFE takes advantage of the low

complexity candidate list generation method SSFE [6], along

with LR-aided linear detection to achieve near optimal perfor-

mance. Heuristics are used to replace the spanning-sorting-

deleting process in FCA [5]. Deterministic data flow and low

cost arithmetic operations in LR-SSFE will result in an ef-

ficient implementation on a parallel programmable baseband

architecture. Comparing with FCA, LR-SSFE achieves the

same performance with significantly lower complexity.

The remainder of this paper is organized as follows: Sec-

tion 2 describes the system model, LR-aided linear MIMO

detection and LR-aided soft output MIMO detection. The

LR-SSFE algorithm is proposed in Section 3, while Section

4 details the simulation results. Afterwards, conclusions are

drawn in Section 5.

2. SYSTEM MODEL

Consider a spatially multiplexed MIMO system with M trans-

mit and N receive antennas denoted as M × N . The vector

of received symbols y ∈ CN×1 is given as

y = Hs+n (1)
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where s ∈ CM×1 denotes the vector of transmitted sym-

bols taken independently from a Quadrature Amplitude Mod-

ulation (QAM) constellation with E
[
ssH

]
= 1M , and n ∈

CN×1 is the vector of independent complex Gaussian noise

samples where ni ∼ N(0, σ2) for 1 ≤ i ≤ N . H ∈ C
N×M

denotes the MIMO channel matrix and is considered to be

perfectly known at the receiver. The channel is considered to

be i.i.d Rayleigh flat fading with unit variance.

2.1. Lattice Reduction-aided Linear MIMO Detection

LR-aided linear MIMO detection has been proposed in [1].

To perform LR-aided MIMO detection first a reduced lattice

basis is obtained as H̃ = HT where T ∈ CM×M is a uni-

modular matrix with det(T) = ±1. In this paper, the CLLL

algorithm [7] [8] is considered for LR. The system equation

(1) can be rewritten as

y = HTT−1s+n (2)

Then Moore-Penrose pseudo inverse of the transformed chan-

nel matrix, H̃† is applied to obtain

H̃†y = T−1s + H̃†n = T−1

[
a

(
s̄ +

1

2
1v

)]
+ H̃†n (3)

where s̄ are the points of the scaled and shifted QAM constel-

lation in the domain (s̄), as shown in Fig.1 in case of QPSK.

The scaling factor a = [
√

2,
√

4/10] in case of QPSK and

16-QAM, respectively. The shift vector 1v is an M ×1 vector

of [1 + 1j]. Now (3) can be rewritten as

1

a
H̃†y − 1

2
T−11v = T−1s̄ +

1

a
H̃†n

ẑ = T−1s̄ + w (4)

The hard estimate is obtained by rounding zr = ⌈ẑ⌋ to the

nearest complex integer and transforming back to the (s̄ −
domain), s̄LRZF = Tzr. The final hard detection step is

shifting and scaling back to the original QAM constellation

to obtain the LR-aided ZF hard estimate as

ŝLRZF =

[
a

(
s̄LRZF +

1

2
1v

)]
(5)

2.2. Lattice Reduction-aided Soft-Output MIMO Detec-

tion

The goal of soft output MIMO detection is to obtain relia-

bility information about the detected symbols. Soft output

MIMO detection usually consists of two parts: (a) A list gen-

erator that gives a list of candidate symbol vectors, denoted

by L ⊆ ΩM , where ΩM is the set containing all the possi-

bilities of M × 1 vector symbol s; (b) A Log-likelihood-ratio

(LLR) generator that approximates the a posteriori probabil-

ities(APP), the approximation becomes near optimal when

L = ΩM . Generating the candidate list dominates the per-

formance and complexity of soft output MIMO detection. A

low complexity tree-searching method is proposed in [5] by

performing QR-decomposition of T−1 as T−1 = QTRT , to

obtain ∥∥ẑ − T−1s̄
∥∥2

=
∥∥QH

T ẑ − RT s̄
∥∥2

(6)

from (4), where QT is a unitary matrix and RT is an upper-

triangle matrix. FCA [5] is based on K-best principle, choos-

ing the K-best candidates at each layer. Once the K-best can-

didates are found the LR-ZF hard estimate ŝLRZF is added

to the candidate list. Although K-best involves modular and

repetitive operations that can be parallelized in VLSI architec-

tures it has various problems when implementing on a parallel

programmable baseband architectures [6]:(1) extensive shuf-

fling incurs significant cycle and energy overhead; (2) data-

dependent memory-operations and computations will signif-

icantly degrade the hardware resource-utilization on a pro-

grammable architecture; (3) the complexity of the spanning-

sorting-deleting process is still too high.

3. LATTICE REDUCTION AIDED SSFE

We propose LR-aided SSFE to overcome the aforementioned

problems for implementation on a parallel programmable ar-

chitecture. The idea is to first generate the LR-aided ZF hard

estimate s̄LRZF in the s̄−domain and then the candidate list

is built around this estimate with efficient heuristics. Sorting-

deleting process is eliminated in the LR-SSFE which results

in a regular deterministic data flow. Simulation results show

that these characteristics significantly reduce the complexity.

A spanning-tree can be constructed to generate a set of

candidates minimizing the distance in (6). The level of the

tree is M + 1; mark the root-level as i = M + 1 and the

leaf-level as i = 1. Each node at level i ∈ {M + 1, .., 2}
is expanded to MQAM nodes at level i + 1, where MQAM

is the constellation size. In this tree each node at level i ∈
{M, .., 2, 1} is uniquely described by the partial vector sym-

bols s̄i = [s̄i, s̄i+1, .., s̄M ], the leaves at level i = 1 corre-

spond to all possible vector-symbols ΩM .

Annotate the root node with TM+1 = 0 and start-

ing from Level i = M , the PED (Partial Euclidean Dis-

tance) of partial symbol vector s̄i = [s̄i, s̄i+1, .., s̄M ] is

Ti(̄s
i) = Ti+1(̄s

i+1) + ||ei(̄s
i)||2, where the PED-increment

||ei(̄s
i)||2 is

||ei(̄s
i)||2 = ||Qiẑ −

M∑

j=i

Rij s̄j ||2 (7)

where Qi is the ith row of QH
T and Rij are the ith row and

jth column entries of RT . ||ei(̄s
i)||2 is non-negative, so the

PED increases monotonically from root to leaves. Hence, the

formulation in (6) has now been transformed to a tree-search

problem. The optimal solution is to find the leaf at level i = 1
with the minimal PED, T1(̄s

1).
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3.1. LR aided SSFE in s̄ − domain

The SSFE [6], is uniquely characterized by a vector m =
[m1, . . . , mM ]. Starting from root level i = M , SSFE spans

each node at level i + 1 to mi nodes at level i. The spanned

nodes are never deleted. Hence, the total number of nodes at

level i is
∏M

k=i mk. If the node at level i = M + 1 has the

associated partial symbol vector being s̄i+1 = [s̄i+1, .., s̄M ],
the spanning is to select a set of s̄i = [s̄i, s̄i+1, .., s̄M ] in a

way that PED-increment ||ei(̄s
i)||2 is minimized. Although,

||ei(̄s
i)||2 can be minimized using FCA [5], which is essen-

tially finding the K-Best closest points to the LR-aided hard

estimate. However, this requires calculating the PEDs at each

level and then sorting and selecting the K-best points. This is

avoided in the proposed LR-SSFE by using fast enumeration

in the s̄ − domain. Our approach is different from the SSFE

proposed in [6] where the points are enumerated in the orig-

inal QAM constellation (s), around the received symbols y.

In LR-SSFE the points are enumerated in the s̄− domain in-

stead, around the LR-aided hard estimate (s̄LRZF ). Since, all

the constellation points in the s̄−domain are integers (Fig.1,

QPSK) this facilitates the use of simple arithmetic operations

in enumeration.

Efficient heuristics, called FE (Fast Enumeration), can be

derived to approximate the selection-sorting operations. To

derive the FE, we first rewrite (7) as

||ei(̄s
i)||2 = ||Qiẑ −

M∑

j=i+1

Rij s̄j − Riis̄i||2

= ||Qizr + Qiez −
M∑

j=i+1

Rij s̄j − Riis̄i||2 (8)

where ez = ẑ − zr is the quantization error from the z −
domain (infinite integer lattice domain). Clearly, the min-

imization of ||ei(̄s
i)||2 is equivalent to the minimization of

||ei(̄s
i)/Rii||2. Hence, from (8) we derive

||ei(̄s
i)/Rii||2 = ||Qizr

Rii

+
Qiez −

∑M

j=i+1
Rij s̄j

Rii

− s̄i||2

= ||s̄LRZF + es̄ +
Qiez −

∑M

j=i+1
Rij s̄j

Rii︸ ︷︷ ︸
eα

−s̄i||2

= ||s̄LRZF + eα − s̄i||2 (9)

where s̄LRZF = Q(Qizr

Rii

) is the LR aided ZF hard estimate

obtained using the slicing operator Q, which is essentially

rounding and applying boundary control and es̄ = (Qizr

Rii

) −
s̄LRZF is the quantization error.

Specifically, minimizing (9) essentially selecting the clos-

est complex integer constellation point (in the s̄−domain) to

s̄LRZF + eα. For LR-SSFE, the FE is to select a set of clos-

est constellation points around s̄LRZF + eα. FCA [5] finds

the closest constellation points to s̄LRZF + eα calculating the

Partial Euclidean Distances to all the constellation points ex-

cluding s̄LRZF at each layer (line S8 Table II in [5]). This

requires comparing the LR-aided hard estimate to all the con-

stellation points for making the exclusion and calculating the

PEDs. To avoid this we derive the Fast Enumeration based on

(9).

3.2. Fast Enumeration in s̄ − domain

In FE the first point is always set to p1 = s̄LRZF (mi = 1)

to guarantee the ML diversity. The closest constellation point

to s̄LRZF + eα is p2 = Q(s̄LRZF + eα). However, when

|ℜ(eα)| < 0.5 and |ℑ(eα)| < 0.5, p2 = p1. To avoid this

double inclusion of the same point we make use of simple

operations, such as rounding and boolean logic ‘OR’. When

|ℜ(eα)| < 0.5 and |ℑ(eα)| < 0.5, finding the closest constel-

lation points to s̄LRZF + eα is approximately same as finding

the closest points to s̄LRZF i.e. p1, otherwise it is finding

closest constellation points to s̄LRZF + eα. For mi ≥ 2 more

points can be efficiently enumerated based on the direction

vector d = s̄LRZF +eα−Q(s̄LRZF +eα). For mi, i ∈ [2, 3, 4]
the points can be enumerated in the following way,

p1 = s̄LRZF

ζ = (⌈|ℜ(eα)|⌋ > 0) ⊕ (⌈|ℑ(eα)|⌋ > 0)

φ = |ℜ(d)| > |ℑ(d)|
p2 = (!ζ)(p1 + (sgn(ℜ(d))φ + j(sgn(ℑ(d))(!φ)))

+ (ζ)(Q(s̄LRZF + eα))

p3 = (!ζ)(p1) + (ζ)(p2)

+ (sgn(ℜ(d))(!φ) + j(sgn(ℑ(d))φ))

p4 = (!ζ)(p1) + (ζ)(p2) + (sgn(ℜ(d)) + j(sgn(ℑ(d)))
(10)

where ‘sgn()’ is the operator for extracting the sign of a num-

ber (positive/negative), ‘!’ is the logic-not operator and ‘⊕’ is

logical-OR. The technique applied here is to incrementally

grow the set around p1 when ζ = 0, otherwise the set is built

around the point s̄LRZF + eα when ζ = 1.

For example, if ζ = 0 and |ℜ(d)| > |ℑ(d)|, the clos-

est constellation p2 to p1 is on the horizontal-line where p1

stays, and the distance between p1 and p2 is (sgn(ℜ(d)). If

|ℜ(d)| < |ℑ(d)|, p2 is on the vertical-line where p1 stays, and

the distance is j(sgn(ℑ(d)). In the other case, when ζ = 1,

points are enumerated around s̄LRZF + eα, the closest point

p2 to s̄LRZF + eα is obtained as Q(s̄LRZF + eα) and then

further points are enumerated around p2 using d as shown in

(10). Similarly, p3 and p4 are enumerated with simple op-

erations. Using this approach both explicit exclusion of the

s̄LRZF from the list and PED calculations are avoided. This

makes data flow deterministic and data dependent memory

re-arrangement is avoided. The FE (10) uses simple arith-

metic operators like addition, subtraction and rounding. As

the FE is carried out in the s̄ − domain, where all the points
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are integers, these operations can be implemented with low

cost shift-add operations. Fig.1a and Fig.1b shows the 3 enu-

merated points in case of QPSK, when ζ = 0 and ζ = 1,

respectively.
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Fig. 1. Fast Enumeration in s̄ − domain for QPSK (a) ζ = 0
(b) ζ = 1

4. SIMULATION RESULTS

In this section, we provide performance comparison of the

proposed soft output MIMO detector LR-SSFE to ZF, LR-

aided ZF (LR-ZF), FCA [5] and MAP. CLLL [8] algorithm is

used in all the cases for LR. A 4× 4 MIMO system, with i.i.d

Rayleigh Flat Fading channel is considered with complete

channel state information at the receiver. The bit-flipping

strategy proposed in [9] is applied to generate the LLR val-

ues from the candidate list. In all cases 1/2-rate convolu-

tional code of constraint length 7 with generator polynomials

[133, 171] is used.

4.1. BER Performance

Fig.2 shows the coded BER results for QPSK and 16QAM.

As expected, in all the cases LR-SSFE achieves the same di-

versity order as MAP. This proves the motivation for generat-

ing the candidate list using LR-aided ZF hard estimate. LR-

SSFE with only one candidate m = [1111] provides a signif-

icant performance gain of 3dB compared to LR-ZF in case of

QPSK, Fig.2a. While in case of 16QAM, Fig.2b, LR-SSFE

with m = [1111] provides a gain of about 1dB compared to

LR-ZF.

The number of candidates in FCA is Kp +1 as the LR-ZF

candidate is also added to the list of candidates [5]. In case

of QPSK, LR-SSFE with m = [1112] has the same perfor-

mance as FCA with Kp = 1, both having the same number of

candidates. When m = [1233] LR-SSFE is only about 1dB

away from MAP at a BER of 10−4.

In case of 16QAM, Fig.2b, LR-SSFE with m = [1124]
has a slightly better performance than FCA with Kp = 2.

LR-SSFE with m = [1248] is only about 1dB away from

MAP at a BER of 10−4. This gap can be further reduced by

using bigger values of mi.
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Fig. 2. BER Performance 4 × 4 MIMO system (a) QPSK (b)

16QAM

4.2. Complexity Comparison

To the best of our knowledge this is the first LR aided soft

output MIMO detector specifically optimized for parallel pro-

grammable processors. Deterministic data flow and simpli-

fied arithmetic operations in LR-SSFE significantly reduce

the implementation complexity. Table 1 shows the complex-

ity comparison of LR-SSFE and FCA. The CMUL(Complex

Multiplications) and CADD(Complex Additions) required in

generating the candidate list for a 4 × 4 MIMO system with
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16QAM are shown in Table 1, all the intermediate steps such

as QR-decomposition and calculating H̃† are also included.

From Table 1 we can observe that LR-SSFE has a lower com-

plexity compared to FCA [5].

LR-SSFE with m = [1124] has almost the same BER

performance as FCA with Kp = 2 (Fig.2b), while the num-

ber of required operations are significantly reduced. Fig.2b

shows that FCA [5] with Kp = 4 is only about 0.5dB better

than SSFE with m = [1124] at 10−4, while the complexity of

FCA is more than twice of SSFE (Table 1). Although the size

of the candidate list in case of LR-SSFE with m = [1248] is

bigger than FCA Kp = 8, to achieve the same BER perfor-

mance with in 1dB of MAP, the cost of generating the candi-

date list with LR-SSFE is still significantly lower than FCA

(Table 1). This complexity gap between LR-SSFE and FCA

will further increase when using bigger QAM constellations.

In an implementation on a parallel programmable processor,

LR-SSFE will have more efficient utilization of hardware re-

sources than FCA, as there are is no sorting-deleting in LR-

SSFE.

ZF LR-ZF SSFE (m) FCA (Kp)

1111 1122 1124 1248 2 4 8

CMUL 270 572 820 848 886 1330 1414 1998 3166

CADD 124 298 435 480 542 1210 810 1202 1986

Table 1. Complexity Comparison of LR-SSFE and FCA [5],

4 × 4 MIMO system 16QAM

5. CONCLUSION

In this work, we presented LR-SSFE as a low complexity soft

output MIMO detector that can achieve close to MAP perfor-

mance. LR-SSFE has a completely deterministic and regular

data flow which will enable efficient implementation on a

parallel programmable processor. Moreover, LR-SSFE can

be configured to achieve different performance/complexity

trade-offs, which is highly desirable for Software Defined

Radio baseband processing. Simulation results show that un-

der the same performance constraints LR-SSFE has a lower

complexity than FCA.
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