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ABSTRACT

A faster computational method for performing frequency
domain independent component analysis (FDICA) using a
dodecahedral microphone array is proposed. Source sepa-
ration with FDICA uses the spectrum of observed signals
and estimates separation filters for each frequency. However,
this technique is complex and requires high computational
resources. In this paper, a method of selecting temporal
frames which are effective for training the separation filters
is proposed and evaluated. The log power spectrum and
the kurtosis of amplitude distribution are employed as se-
lection criteria. Performance was evaluated by comparing
signal-to-interference performance with that of the conven-
tional method. Experimental results showed that the proposed
method reduced computation to 17.1 % of that required by
the conventional method, and that separation performance of
the proposed method is superior. Therefore, the proposed
method can achieve faster computation with lower computa-
tional complexity, and its effectiveness can be confirmed.

Index Terms— Dodecahedral microphone array, Fre-
quency domain independent component analysis, Computa-
tional complexity reduction, Signal-to-interference improve-
ment

1. INTRODUCTION

Frequency domain independent component analysis (FDICA)
[1], which achieves source separation with only the assump-
tion of independence between each source, is a blind source
separation (BSS) method that extracts objective source sig-
nals without prior information. Although many studies on
source separation target two sources, several sources often
need to be separated in actual environments, because many
speakers or noises are likely.

A source separation method using a dodecahedral mi-
crophone array (DHMA), as shown in Fig.1 is proposed[2].
Sixty microphones are set on the DHMA. This array can
separate many sources with high accuracy, but a problem
occurs because of the extremely high computational com-
plexity involved. FDICA source separation requires huge

computational resources, mainly for iterative learning on
each frequency. The degree of computational complexity
depends on the number of iterations, frequency bins, tem-
poral frames and separated signals. Since estimation of the
separation matrix requires a nonlinear correlation matrix be-
tween separated signals, computational complexity increases
by the second power of the number of separated signals. A
high-convergence algorithm combining beamforming and
ICA [3, 4] has been proposed and the number of iterations
is reduced. However, the computational complexity for con-
structing the beamformer increases according to the squared
value of the number of sources. Therefore, another method
that trains separation matrices on partial frequencies[5] has
also been proposed, and reduction of computational complex-
ity is achieved. However, calculation of frequency selection
criteria, and estimation of substitute separation matrices for
frequencies that are not selected, still required large compu-
tational resources.

Based on the above, this paper examines selection of tem-
poral frames. Short time Fourier transforms (STFT) of ob-
served signals are used for selecting temporal frames. If more
effective temporal frames are selected, separation matrices
can be trained using only these selected temporal frames, con-
tributing to the reduction of computational complexity. In a
previous study[5], the determinant of the spatial correlation
matrix using observed signals was employed as the selec-
tion criteria, because the log power spectrum and the mixture
number can be utilized. However, spatial correlation matrices

Fig. 1. Dodecahedral microphone array[2].
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which are frequency dependent cannot be used as selection
criteria for temporal frames. In this paper, in addition to the
observed log power spectrum, kurtosis is employed as a crite-
ria for evaluating mixture numbers. Because non-Gaussianity
of temporal frames is decreased when many source signals are
mixed, kurtosis of amplitude distribution, which is a method
of evaluating non-Gaussianity, can be employed on each tem-
poral frame to evaluate the mixture number. Although the
method described above increases the computational com-
plexity of the calculation of selection criteria, overall compu-
tational complexity is reduced considerably. Additionally, a
trained separation matrix can be applied to temporal frames
which are not selected for training, and the computational
complexity required for interpolation of the un-trained frames
is eliminated.

This paper consists of four sections. In section 2, a global
flow chart of the proposed temporal frame selection method
is provided, and each step of the process is then described. In
section 3, experimental evaluation of the proposed method,
and comparison with the conventional method, are described.
Section 4 concludes this paper.

2. PROPOSED METHOD

A global flow chart of 60 channel source separation with
DHMA is shown in Fig.2. X(f, τ) is given by STFT of 60
observed signals x(t) from the DHMA. The dimension of
the observed signals is reduced using a subspace method[6].
Temporal frames are selected and the separation matrices are
estimated by ICA iterative learning, using only the selected
temporal frames. The permutation problem with FDICA is
solved when we assume that the pseudo-inverse matrix of the
separation matrix represents the propagation characteristics
of signals from sources to microphones.

2.1. Subspace method

The dimensions of input and output signals are the same as in
the ICA. Therefore, the dimension of the input signals must
be reduced when the dimension of the output signals is larger.
A subspace method employs eigenvalue decomposition of the
spatial correlation matrix of observed signals as

Rxx(f) = Eτ [X(f, τ)XH(f, τ)]

= V(f)Λ(f)V(f)T , (1)

where (·)H represents conjugate transposition. Λ(f) is a di-
agonal matrix, and V(f) is composed of characteristic vector
v(f) and

V(f) = [v1(f), . . . , vM (f)]. (2)

The given characteristic vector v(f) is used only as a source
of the number of desired separation signals, which is repre-
sented by V′(f). Likewise, the diagonal matrix Λ′(f) is a

new matrix with a reduced number of dimensional character-
istics, which is derived from a characteristic number diagonal
matrix Λ(f). Finally, subspace signals are given as

Z(f, τ) = Λ′(f)−1/2V′(f)X(f, τ). (3)

2.2. Temporal frame selection

In order to reduce the computational complexity of two
channel FDICA source separation, frequency band selec-
tion FDICA[5] has been proposed. Using this method, the
determinant of the spatial correlation matrix, calculated from
observed signals, is employed as the criteria for selecting
frequency bands. Frequencies in which the determinant of
the covariance matrix is large are selected. This is because
such frequencies contain both signals’ components and also
because the log power spectrum is large. If there is only one
source the determinant goes to zero. The separation matrix
of a frequency which is not selected is substituted with the
coefficient of beamforming, which results in lower computa-
tional complexity. In contrast, our proposed method involve
a method of temporal frame selection.

Useful temporal frames are selected from the sequence
of the spectrum using STFT, and a separation matrix is es-
timated using only the selected temporal frames. Using the
previously described band selection FDICA method, the ob-
served log power spectrum and mixture number are consid-
ered during selection. However, the observed log power spec-
trum and kurtosis of amplitude distribution are employed as
the criteria for temporal frame selection. One proposal for es-

Subspace method
Temporal frame selection*
Iterative learning with ICA

Solving the permutation problem

Observed signals

Resultant separated signals
Fig. 2. FDICA source separation system that is employed in
this paper. All steps are performed on the frequency domain.
The step in the process which is modified by the proposed
method is indicated by ∗ .
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timation of separation matrices with ICA is maximization of
non-Gaussianity [7]. This idea is based on the central limit
theorem. When random variables x1, . . . , xn follow mutu-
ally independent random distributions, the distributions x =
(x1+· · ·+xn) become normal distributions if n is sufficiently
large. Thus, when sources which are mutually independent
mix, the amplitude distribution approaches a normal distri-
bution and non-Gaussianity decreases. This non-Gaussianity
can be evaluated by kurtosis. Kurtosis is defined as the fourth
moment divided by the fourth power of the standard devia-
tion, and as:

K = E

[(
x− µ

σ

)4
]
, (4)

where E[·] denotes expectation, µ is the mean and σ is the
standard deviation. FDICA estimates the separation filters
to maximize non-Gaussianity. This is because when a num-
ber of sources are mixed, the amplitude distribution closes
in a Gaussian manner and non-Gaussianity diminishes. Thus
the kurtosis also becomes diminished. For example, Fig.3
shows distribution and kurtosis of amplitude for each number
of mixing sources. The mixture sources consist of different
speech signals with a length of 4 seconds, mixed on the time
domain. Since it has been confirmed that kurtosis becomes
diminished when a number of sources are mixed, low kur-
tosis temporal frames are preferentially selected. Here, the
kurtosis of each temporal frame is defined as the kurtosis of
the samples in the window.

2.3. Iterative learning using ICA

FDICA is a method of statistical analysis which employs only
the assumption that source signals are mutually independent.
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Fig. 3. Distribution and kurtosis of amplitude for various
numbers of mixed sources.

Independence is a stronger characteristic than non-correlation
and indicates non-linear non-correlation[7]. When s1 and s2
are mutually independent, non-correlation is satisfied. Addi-
tionally arbitrary non-linear transforms ϕ(s1) and ϕ(s2) are
also not correlated. Thus, separation matrices are trained so
that the covariance matrix of the separation signals and their
non-linear transform, represented as:

Ry(f) = Eτ [Φ(Y(f, τ))YH(f, τ)] (5)

go to a diagonal matrix. Eτ [·] denotes expectation about
STFT frame index τ . To estimate separation matrices, natural
gradient learning can be used as in:

W(f)← α
[
diag(Eτ [Φ(Y(f, τ))YH(f, τ)])

−Eτ [Φ(Y(f, τ))YH(f, τ)]
]
W(f), (6)

where α is the updating coefficient and diag(·) denotes ex-
traction of only the diagonal components. Estimation of the
covariance matrix using separation signals Y and their non-
linear transforms Φ(Y) is achieved by using the sample aver-
age, so a sufficient duration of observed signals is needed so
that the covariance matrix can be estimated with accuracy.
Statistical analysis using FDICA then captures the tempo-
ral sequence of the spectrum using the STFT of the sample
for each frequency, and separation on each frequency can be
achieved by using the covariance matrices of their non-linear
transform. Thus it is possible to estimate the separation ma-
trices with only selected temporal frames.

2.4. Solving the permutation problem

FDICA estimates the separation matrices on each frequency,
but the order of output signals between frequencies is irregu-
lar. This is called a permutation problem, and many methods
for solving permutation problems have been proposed[8, 9].
Solutions can be divided into two groups. One type of so-
lution uses the correlation between neighboring frequencies,
and the other uses the arrival direction of the sources. In this
paper, the permutation problem is solved based on arrival di-
rection using the DHMA[2, 10]. The pseudo-inverse matrix
of the separation matrix describes propagation characteristics
from sources to microphones, and the permutation problem
can be solved by clustering signals coming from the same di-
rection. A number of features obtained using the DHMA are
used for clustering propagation characteristics.

3. SOURCE SEPARATION EXPERIMENT

3.1. Experimental description

A source separation experiment using impulse responses from
each source to each microphone was conducted. The DHMA
shown in Fig.1 is used as the sound receiving device. This
device does not cause spatial aliasing until 24 kHz because
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the distance between microphones is 7 mm. The sampling
rate is 40 kHz. Window size is 1024 points (25.6 msec) and
shift size is 256 points (6.4 msec). The FFT point is 1024.
The reverberation time is 138 msec. in a low reverberation
room. The number of sources is 12, and the experimental set-
up is shown in Fig.4. The scaling problem of FDICA is solved
using the projection back method[11].

To check the effectiveness of this method, Ls frames are
selected from the total Lt frames given by STFT of observed
signals. The Ls frames are selected following each selection
criteria. For temporal frame selection, log power spectrum is
normalized to a mean of 0 and a standard deviation of 1 as:

P̄ =
P − µP

σP
, (7)

where µP is the mean of the log power spectrum and σP is
the standard deviation of the log power spectrum. Likewise,
normalized kurtosis is calculated as:

K̄ =
K − µK

σK
, (8)

where µK is the mean of kurtosis and σK is the standard devi-
ation of kurtosis. From the above, temporal frames with high
P̄ or low K̄ are selected, respectively. When considering both
selection criteria, another selection value is defined as

C = βP̄ − (1− β)K̄, (9)

where β is a weight coefficient. Temporal frames that have
high C are selected. In the conventional method, separation
filters are estimated using the beginning Ls. SIR (Signal to In-
terference Ratio) improvement and processing time are com-
pared. Since the observed signals are 4 sec. in length, the
total number of frames is Lt = 600, with Ls = 100, 150, . . .,
600 representing the number of frames which are selected.

Fig. 4. Experimental set-up.

3.2. Evaluation method

SIR improvement is employed for evaluation of separated sig-
nals. SIR is the degree of interference of undesired signals
with the desired signal. SIR improvement is represented as

SIRimprovementξ = OutputSIRξ − InputSIRξ. (10)

Here InputSIR is the ratio of desired signal xξ(t) to undesired
signal xs(t)(s ̸= ξ) in an observed signal, and is described as

InputSIRξ = 10log10

[ ∑
t xξ(t)

2∑
t{
∑

s̸=ξ xs(t)}2

]
. (11)

OutputSIR is the ratio of desired signal in the separation sig-
nal yξξ(t) to undesired signal yξs(t)(s ̸= ξ) and is repre-
sented as

OutputSIRξ = 10log10

[ ∑
t yξξ(t)

2∑
t{
∑

s̸=ξ yξs(t)}2

]
. (12)

In this paper, the average SIR improvement score using 12
sources is employed for evaluation.

3.3. Experimental results

The results using each method are shown in Fig.5. The re-
sults show that FDICA source separation can work without
using temporal frames successively. By selecting high log
power spectrum or low kurtosis temporal frames respectively,
the number of frames needed to achieve the same values de-
creases in comparison to the conventional method. Higher
values of SIR improvement can be achieved by employing
kurtosis as a criteria, and by considering both log power spec-
trum and kurtosis, even higher SIR improvement values can
be achieved. For example, the number of frames needed to
achieve 24 dB can be reduced by 50%. In this paper, the
weight β is 0.4 and emphasis is placed on the kurtosis.

Next, table 1 shows the relationship between the num-
ber of temporal frames to used for estimation and processing
time. We considered the processing time using the conven-
tional method, which requires estimating the settings for the
filters using all 600 frames, to be 100%. When the number
of temporal frames decreases, computational complexity also
decreases. This result supports the theory that computational
complexity is proportionally affected by the number of tem-
poral frames. Thus it can be said that the number of temporal
frames has a huge effect on processing time for estimating
separation filters. In addition, the computational complex-
ity for calculating our selection criteria, which are log power
spectrum and kurtosis, are very small.

4. CONCLUSION

In this paper, the computational complexity of different
FDICA source separation methods were discussed. We pro-
posed a method in which separation filters are trained with
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Fig. 5. Experimental results.

Table 1. Processing time. We considered the processing time
using all 600 frames, to be 100%.

Ls 100 150 200 250 300
Time [%] 17.1 25.4 33.6 41.7 49.2

Ls 350 400 450 500 550
Time [%] 56.8 63.8 75.4 83.4 90.7

only selected temporal frames. Our proposed method uses
the observed log power spectrum and kurtosis of amplitude
distribution as selection criteria. Our separation experiment
showed that higher SIR improvement values can be achieved
with fewer temporal frames than when using the conven-
tional method. We also found that it is especially effective
to consider kurtosis and to select frames which include many
sources. Even higher values can be achieved by considering
both log power spectrum and kurtosis. Future work involves
examining criteria for selection of temporal frames using
other features of observed signals.
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