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ABSTRACT

This paper presents a novel method for solving the permuta-
tion ambiguity of frequency-domain independent component
analysis based on source signal envelope correlation maxi-
mization. The proposed method is developed for blind source
separation with high sampling frequency and significant spa-
tial aliasing. We propose a method that analyzes the source
envelope using a rank-one singular value decomposition
(SVD) applied to an initial source magnitude spectrogram
obtained by a time difference of arrival (TDoA) based per-
mutation alignment method. The permutation for frequencies
with incoherent TDoA are corrected by maximizing the cross-
correlation of the SVD analyzed source activation vector and
each independent component magnitude envelope. We evalu-
ate the separation quality using real high sampling frequency
speech captures and the proposed method is found to improve
the separation over the baseline algorithm.

Index Terms— Blind Source Separation, Independent
Component Analysis

1. INTRODUCTION

The blind source separation (BSS) of simultaneously emitting
sound sources, generally known as the cocktail party problem,
has been intensively studied over the years, but is however
still categorized as an unsolved problem. In the course of this
paper we pursue blind separation of high sampling frequency
speech using independent component analysis (ICA) applied
in frequency domain leading into frequency-wise permutation
ambiguity. The permutation alignment have been previously
solved for example based on mixing filter frequency response
smoothness [1], temporal structure of the source signals [2],
and time-difference of arrival (TDoA) and direction of arrival
(DoA) [3, 4] interpretation of ICA mixing parameters. The
latter can be considered as generally robust with no assump-
tions on the source characteristics, however their performance
starts to degrade in reverberant conditions and with captures
involving lot of spatial aliasing frequencies.

In this paper we propose a novel method for ICA per-
mutation alignment that resolves the component ordering via
maximization of intra-source envelope correlations. TDoA
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based algorithm [4] is used for obtaining an initial solution
for the ICA parameter alignment which is to be improved by
the proposed method. The proposed algorithm is applied for
frequencies where the source TDoA is incoherent due spa-
tial aliasing and reverberation making the source magnitude
envelopes more accurate method for permutation alignment.
The separation quality of the proposed method is evaluated
using high sampling frequency speech captures and the re-
sults show an increase in separation quality measured using
quantities proposed in [5].

The rest of the paper is organized as follows, in Section
2 we review the frequency domain ICA and the permutation
alignment algorithms used in prior art. The proposed method
is presented in Section 3. In Section 3.1 we shortly present the
TDoA based permutation algorithm [4] used for obtaining an
initial permutation solution. The proposed singular value de-
composition (SVD) based source envelope analysis and the
permutation alignment by maximization of intra-source en-
velopes is presented in Section 3.2. The source separation
quality of speech samples is presented in Section 4.

2. BLIND SOURCE SEPARATION AND
INDEPENDENT COMPONENT ANALYSIS

The array capture can be considered by the following convo-
lutive mixture model in the time-domain

=3 )

j=1 7

T)s;(t—1T) 1

where 2, (t) is the mixture of j = 1...J source signals cap-
ture by sensor m = 1...M and sampled in time instances {.
The spatial response from the source j to the sensor m is de-
noted by h,,;(7) and the source signals are given as s;(t).
Convolutive model (1) is usually approximated by instanta-
neous mixing in frequency domain as

J
Z Dsi(f,n) @)

where x(f,n) = [x1,...,2]7 is the short-time Fourier
transform (STFT) of the array capture x,,(t), f = 1...F is
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the frequency index and n = 1...NN is the frame index. The
impulse response h,,,;(T) is replaced with the frequency re-
sponse denoted by h;(f) = [h1;,. .., ha;]T and the STFTs
of source signals are denoted by s;(f,n).

The ICA applied to the frequency domain model (2) has
been successfully used for determined BSS [1, 2, 3, 4] where
M > J. ICA is applied separately for each frequency bin f
to obtain J x M unmixing matrix W as in

y(f,n) = W(f)x(f,n). ©)

where y(f,n) = [y1,...,ys]T corresponds to the sources
sj(f,n) with an arbitrary permutation of sources indices at
each frequency f. Further we assume that the unmixing ma-
trix is invertible and define A(f) = W(f)~!, thus we can
write the ICA model as,

x(f,n) = A(f)y(f;n) Q)

If J < M, the mixing matrix is obtained via Moore—Penrose
pseudoinverse A(f) = W(f)T. A is constructed of column
vectors [ay, ...,ay] and each vector denotes the response of
single source j to the each capturing sensorm = 1,..., M.

In the earliest frequency-domain ICA based BSS meth-
ods [1] the permutation alignment was solved by assuming
a smooth frequency response of the mixing filters h;(f).
Later in [2] the temporal structure of the separated signals
y(f,n) was considered and the permutation was solved by
maximizing cross-correlation of magnitudes of neighboring
frequencies. TDoA and DoA interpretation of component
bases a;(f) has been proposed in [3] and in [6] the TDoA
approach was combined with the magnitude envelope corre-
lation maximization. More recently a method only relying
on anechoic source signal propagation model estimation was
proposed in [4], which will be used as a baseline in this paper.

There also exists ICA-based methods that unify the source
dependencies across frequencies, independent vector analysis
[7] and recursively regularized ICA across frequencies [8]. In
this paper we will concentrate only to the frequency bin-wise
ICA model (3) and improving the permutation alignment in
case of high sampling frequency captures and severe spatial
aliasing over the baseline [4]. Other related work combining
TDoA with envelope correlation maximization include for ex-
ample [6, 9].

3. PROPOSED METHOD

The proposed method for ICA permutation alignment com-
bines a TDoA based algorithm [4] with a novel source en-
velope analysis by rank-one SVD and source temporal activ-
ity cross-correlation maximization across frequencies. With
the proposed algorithm we aim for improving performance of
TDoA based algorithms with high sampling frequency cap-
tures by using source magnitude envelope information in the
permutation alignment.

()
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Fig. 1. Block diagram of the frequency domain ICA and the
proposed permutation alignment by source envelope cross-
correlation.

The block diagram of the proposed method is illustrated
in Figure 1. First the input signal z,,, is STFT analyzed to get
x(f,n). The ICA is applied for each frequency f separately
to obtain mixing matrix A (f) and the source signals y(f, n).
The mixing matrix entries a;(f) are clustered using a TDoA
permutation alignment algorithm to get an initial permutation
matrices P(f). The source signals y(f,n) are aligned us-
ing the initial permutations to obtain ¥(f,n) and the source
envelopes are analyzed using rank-one SVD. The obtained
source envelope v(n) = [vy,...,vs]T is used for finding
the permutation that maximizes the cross-correlation with
|§(f,n)| at each frequency f. The SVD envelope analysis
and cross-correlation matching is repeated until no changes
are made for y(f,n) The time domain source signals are
obtained via inverse STFT.

3.1. Permutation Alignment by Signal Propagation Model

The initial alignment of separated components is obtained by
algorithm presented in [4], which is shortly reviewed in this
section. The algorithm provides initial magnitude spectro-
gram matrices |y (f, n)| in order to be SVD analyzed and cor-
rected by the proposed algorithm presented in Section 3.2.

The parameters a;(f) are phase and amplitude normal-
ized with respect to a chosen reference sensor by subtracting
the reference sensor phase and dividing by its norm, result is
denoted by a;( f). Normalization gives the relative TDoA of
the mixing parameters in terms of phase difference with re-
spect to the reference sensor. The source propagation model
is defined as

i (£) = Anj exp(—i2 fTins) ®)

which approximates the mixing filter frequency response
him;(f) by having a fixed time delay 7,,; and attenuation
Amj from source j to each capturing sensor m over all fre-
quencies. The propagation model (5) translates into a fixed
spatial position in means of TDoA in anechoic conditions,
which further can be viewed as DoA estimate of the source.
The permutations are solved by minimizing the cost func-

tion .
D= Z Z ||an(J)

j=1f=1
where the permutation of &, ( f) for each frequency f is given
by Py(j) and the propagation model (5) is given in vector

h;(f)]? (6)
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form flj( f). The permutation alignment and the propaga-
tion model estimation is solved simultaneously and the cor-
rect permutations depend on the accuracy of the estimated
propagation model. With no further algorithm details we as-
sume to obtain the permutation matrix P(f) for changing the
rows of y(f,n) and estimated propagation model b (f) that
minimizes the cost function (6). The details of the algorithm
can be found from [4].

3.2. Source Envelope Analysis and Cross-correlation
Maximization of Magnitude Envelopes

We start the derivation of the proposed algorithm by consid-
ering which of the frequency indices after the permutation
alignment given in Section 3.1 have high confidence of being
correct. These frequency indices are used as a reference for
analyzing the source envelopes using a rank-one SVD. The
proposed algorithm is applied for correcting the permutation
of the rest of the frequency indices.

The confidence of correct permutation at each frequency
after TDoA permutation can be extracted by evaluating the
following distance measure,

J
D(f) =Z|I5Pf<j>(f) —hy(NHIP ©)

and sorting D(f) in ascending order. Choosing the kg first
frequencies, denoted by set Fr, will serve as a reference hav-
ing the lowest distance to the estimated propagation model h.
The frequency indices to be corrected by the proposed method
are chosen by taking indices kq, . . ., F’ from the sorted D( f),
denoted by set F. These have the most incoherent TDoA
and amplitude difference with respect to the estimated prop-
agation model. Note that Fr and Fq can have overlapping
frequencies if kg < kg.

The confidence measure (7) assumes that the estimation
of the propagation model ﬁj( f) has converged close to the
actual spatial position in terms of TDoA and that the ane-
choic source propagation assumption holds for the observed
data. It is shown by an example in Section 4 that the lowest
frequencies fit to the model (5) more accurately whereas the
ICs at higher frequencies suffer from the spatial aliasing and
phase modification by reverberation making the permutation
uncertain according to (7).

The permutation matrix P(f) obtained from the TDoA
based alignment is used to change the ordering of rows of
vector y(f,n) to correspond to a single source signal de-
fined as y(f,n) = P(f)y(f,n). The magnitude spectrogram
matrix of the sources after initial permutation is denoted as
Y ()l rn = 19;(f,m)]-

The permutation correction algorithm is described as fol-
lows. For each source j = 1...J we apply the SVD to the
magnitude spectrogram of the sources given as,

Y =UypZ,V(), fE€Fr ®
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Fig. 2. An example of the SVD analyzed source envelope in
the middle, the source magnitude spectrogram after baseline
[4] on the top and the source magnitude spectrogram after
proposed permutation alignment in the bottom.

where subindices () denote the matrix indexing correspond-
ing to each source and each ?(j) is of size kg x N. To obtain
a rank-one approximation of the source magnitude spectro-
gram we take the singular vectors Uj;); . and V;; . corre-
sponding to the largest singular value 3;); ;. The singular
vector Uy, . contains the average source spectrum and the
corresponding temporal activity is given by V ;y; . which we
propose to use as the reference source envelope.

The analyzed source envelope for each STFT frame n is
hereafter denoted by v(n) = [v1,...,vs]T = V(j); . The
SVD analyzed envelope is assumed to capture quintessen-
tial temporal activity features of the source and thus can be
used as a reference for aligning permutation for frequencies
f € Fg by maximizing the cross-correlation of source mag-
nitudes and v(n). An example of the SVD analyzed envelope
and the source magnitude spectrogram before and after the
proposed permutation alignment is illustrated in Figure 2.

The permutation optimization with the obtained source
envelopes v(n) can be defined as

N
P(f)  argmaxp(s) Y _v(n)"P(f)§(f,n), Vfe Fq

n=1

©)
which equals finding a new permutation matrix P(f) which
maximizes the cross-correlation of v(n) and source mag-
nitude envelopes P(f)y(f,n) within the frequency set
f € Fg. In practice the maximization is implemented by
searching through all combinations of P(f) : {1,...J} —
{1,...J} and choosing the one producing largest cross-
correlation, this is computationally feasible for low number
of sources. As a result we obtain a new permutation matrix
P(f) which is used for aligning the permutations as

y(fin) < Py (f,n) (10)
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Fig. 3. The capturing array used in the simulations. Micro-
phones are denoted by circles and the zero angle references
axis by an arrow.

The experiments with the algorithm has shown that choos-
ing kg < kg produces generally best results regarding the
separation quality. In this case the evaluation of permutation
optimization given in Equation (9) may also change permu-
tation for frequency indices f € Fr which further affects on
SVD analysis (8). The proposed algorithm is implemented
by iteratively evaluating Equations (8) - (10) until no permu-
tation changes are made in (10). With a suitable choice of kr
and kg the algorithm usually converges in less than 10 itera-
tions. The choice of kg and k¢ is discussed in more details
in Section 4.

4. EVALUATION OF SEPARATION QUALITY

In this section we evaluate the separation performance of the
proposed algorithm against the TDoA based algorithm pro-
posed in [4]. The evaluation consist of real audio captures
recorded in following conditions: sampling frequency was
48kHz, the room dimensions were 4.53 x 3.96 x 2.59 m and
the reverberation time (T60) was approximately 0.26s.

The capturing array consists of four DPA 4060-BM
prepolarized omnidirectional miniature condensator micro-
phones.The array dimensions are given in Table 1 and the
array geometry with reference axis is illustrated in Figure 3.
The spatial aliasing frequency for the given array is 1563 Hz
which corresponds to STFT frequency bin f = 133.

The test samples used included three male and one fe-
male speakers from Librivox audiobook database which were
played with Genelec 1029A speakers. The utterance length is
10 seconds. Each speaker was captured separately and signals
were combined into mixtures of three simultaneous speakers.
The angle of the speakers with respect the reference axis of
the microphone array are given in Table 2.

4.1. Implementation Considerations

For the ICA parameter estimation we used the complex-
valued version of JADE algorithm [10]. Other parameters
were chosen as follows: STFT window length = 4096 with
50% window overlap, number of target sources = 3. Two

Mic x (mm) y (mm) z (mm) Identification Angle

1 0 -46 6 Speaker 1 180°
2 -22 -8 6 Speaker 2 90°
3 22 -8 6 Speaker 3 45°
4 0 61 -18 Speaker 4 0°

Table 1. Geometry of the array
used for evaluation. Illustrated in
Figure 3.

Table 2. Speaker posi-
tions with respect to ar-
ray zero angle axis.

jon (7)

Cost by equati

200 400 600 800 1000 1200 1400 1600 1800 2000
DFT frequency bin index

Fig. 4. Cost function (7) for an individual test sample. The
reference frequencies f € Fr are denoted by dots and rest of
the cost function entries are denoted by plus-marks.

datasets were used, dataset one consisting of speakers 1, 2
and 4 and dataset two consisting of speakers 2, 3 and 4. The
total number of 10-second utterances in both datasets is five.
It is shown in Section 4.2 that no separate training stage or
development set is needed for the choice of kr and kg due
the separation quality not being affected by a wide range of
choosing kg and kq. The values for the separation evaluation
were chosen as kr = 600 and kg = 300 producing a good
average performance.

An example of the TDoA coherence cost defined by Equa-
tion (7) is illustrated in Figure 4. The reference bins chosen
are denoted by dots and the rest of the frequencies are denoted
by plus-marks. It is clear from the shape of the cost func-
tion that the lowest frequencies have the most coherent TDoA
regarding the estimated propagation model and are chosen
mostly for the reference frequency group f € Fr. Also some
higher frequencies fit the model well and serve as a reference.

4.2. Separation Results

The results from the separation quality evaluation using met-
rics signal-to-distortion ratio (SDR), image-to-spatial distor-
tion Ratio (ISR), signal-to-interference ratio (SIR) and signal-
to-artefact ratio (SAR) proposed in [5] are given in Table 3.
The measures are averaged over all sources and all utterances.
With the proposed method the SDR separation quality in-
creases by 0.72 dB and 0.48 dB in the datasets one and two,
respectively. The source interference (SIR) is improved no-
ticeably, the separated source spatial image accuracy (ISR)
improves as well and the separation artifacts are decreased
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Baseline [4] Proposed
Dataset 1 2 1 2
SDR (dB) 3.88 0.92 4.60 1.40
ISR (dB) 8.92 5.04 10.19 5.63
SIR (dB) 8.37 1.42 9.64 2.93
SAR (dB) 6.24 3.85 6.82 4.43

Table 3. Separation results for datasets one and two.

(SAR).

Each source in dataset one are spatially separated at least
by 90° whereas in the dataset two the spatial separation is 45°,
which significantly decreases the separation performance. In
case of dataset two where the initial separability of the sources
is poor the proposed algorithm is still able to improve the
average separation of sources, considering the fact that the
derivation of the algorithm assumes obtaining a fair initial
separation for the envelope analysis.

The effect of the algorithm parameters kr and kg is illus-
trated in Figure 5 where the SDR separation performance is
given with different combinations of kg and kg. The perfor-
mance of the proposed algorithm is almost equivalent regard-
less of the choice of the parameters. Only too few reference
frequencies kr = 200 degrades the SDR quality below the
baseline performance. The results in Figure 5 indicate high
robustness towards the choice of the parameters and elimi-
nates the need of a separate training stage.

Temporal activity based permutation alignment algo-
rithms are known to be less efficient with short signals and
thus the proposed method was additionally tested with the
signals from the test set one split to duration of 2.5 seconds.
The average SDR was 2.82 dB and 3.15 dB for the baseline
and the proposed algorithm, respectively, indicating improved
separation with the proposed method also in such cases.

5. CONCLUSION

In this paper we proposed an algorithm for independent com-
ponent analysis (ICA) permutation alignment when used for
blind source separation (BSS) of simultaneous speakers. The
proposed method is based on analysis of source envelopes by
rank-one SVD and maximizing the cross-correlations of the
analyzed envelope and source magnitude envelopes at each
individual frequency. The proposed method is aimed for im-
proving the time difference of arrival (TDoA) based align-
ment algorithms suffering from spatial aliasing in case of high
sampling frequency speech and it was found to improve the
separation quality in such conditions.
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