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ABSTRACT

In this paper, we present a post-processing method for mu-

sical noise suppression in enhanced speech recordings. The

method uses pre-image iterations computed patch-wise on

complex-valued spectral data of the enhanced signal to dis-

criminate between speech and non-speech regions. From

this knowledge, a binary mask is derived to suppress musical

noise in the non-speech regions, where it is most disturbing.

The method is evaluated using objective quality measures of

the PEASS toolbox. These measures confirm that a suppres-

sion of artifacts and an increase in overall quality for several

noise conditions is achieved.

Index Terms— Speech enhancement, musical noise sup-

pression, pre-image problem

1. INTRODUCTION

The occurrence of musical noise is a major problem in speech

enhancement. Musical noise is caused by inaccuracies of the

enhancement algorithm at hand, it originates from a random

amplification of frequency bins that change quickly over time.

Musical noise is perceived as “twittering” and can severely

degrade the perceptual quality of enhanced speech record-

ings. If it is too prominent, it may even be more disturbing

than the interference before enhancement. Figure 1 (a) shows

the spectrogram of a speech recording with interfering white

Gaussian noise at 10 dB signal-to-noise ration (SNR) that has

been enhanced by the generalized subspace method [1]. The

“blobs” in the non-speech region of the spectrogram are per-

ceived as musical noise.

Much research has been carried out on how to avoid or

suppress musical noise, either by modifying the enhancement

method or by post-processing the enhanced utterances. In the

context of spectral subtraction, spectral flooring [2] and over-

subtraction [3] were introduced. For post-processing musi-

cal noise/speech classification of the spectral bins and sub-

sequent manipulation [4], post-filtering [5] and smoothing of

the weighting gains [6] were proposed.
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Recently, we showed how the knowledge gained from

the convergence behaviour of pre-image iterations applied for

speech de-noising [7] can be employed to suppress musical

noise in enhanced speech recordings [8]. In this paper, we

perform pre-image iterations on enhanced signals, in contrast

to [8], where they were applied on the noisy signal. From

the number of iterations until convergence a binary mask is

derived that segments the signal into speech and non-speech

regions. This mask is used to suppress musical noise in non-

speech regions. Experiments were performed on speech data

corrupted by additive white Gaussian noise at 0, 5, 10, and

15 dB SNR. The resulting speech recordings were evaluated

using the PEASS toolbox [9]. The provided quality measures

show an increase in overall quality and a decrease of artifacts

- this is consistent with the subjective impression from listen-

ing.

This paper is organized as follows: Section 2 introduces

pre-image iterations and for musical noise suppression. Sec-

tion 3 presents the experimental setup, the evaluation and the

results. Section 4 concludes the paper.

2. MUSICAL NOISE SUPPRESSION USING

PRE-IMAGE ITERATIONS

Pre-image iterations were originally proposed for speech de-

noising. In [8], we introduced pre-image iterations for sup-

pression of musical noise in enhanced speech recordings, i.e.,

the pre-image iterations were executed on the noisy signal be-

fore enhancement, while in this paper they are computed on

the enhanced signal. For speech enhancement any method

such as subspace methods or spectral subtraction can be used.

The block diagram in Figure 2 illustrates the implementation:

First the short-term Fourier transform is computed for the en-

hanced signal s. Then patches are extracted from the resulting

time-frequency representation. The pre-image iterations are

used to derive a binary mask for speech/non-speech discrim-

ination, that is further refined by morphological operations

from image processing. This mask is used to filter the mag-

nitude of the input signal. The resulting magnitude values

are recombined with the phase of the input signal, the inverse
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Fig. 4. Number of iterations for each time-frequency bin, (a)

computed from the noisy signal, (b) computed from the en-

hanced signal.

(i.e. one patch), x0 denotes the sample for which the pre-

image is computed, M is the number of samples, k(·, ·) de-

notes the kernel function and λ is the regularization param-

eter. We use a Gaussian kernel k(xi,xj) = exp(−‖xi −
xj‖

2/c), where c is its variance.

For the estimation of the pre-image, equation (1) is iter-

ated until convergence of zt+1. From the number of iterations

until convergence, useful information about the properties of

the underlying signal can be derived. This is illustrated in

Figure 4, where the number of iterations for each patch is vi-

sualized according to its position in the time-frequency plane.

Figure 4 (a) shows the number of iterations (encoded as

color) computed from the noisy signal as in [8], when max-

imally 6 iterations are executed. Non-integer values result

from averaging between overlapping patches. A comparison

to the noisy signal and the clean signal in Figure 1 (b) and (c),

respectively, shows that the regions corresponding to speech

need fewer iterations until convergence than the regions cor-

responding to noise. The different convergence behaviour is

caused by the similarity measure of the kernel, which returns

different values for speech and noise regions. We exploit this

observation by setting a threshold to compute a binary mask

for suppressing musical noise in non-speech regions.

In this paper, we compute the number of iterations from a

signal enhanced by the generalized subspace method [1] (see

Figure 4 (b)). Again, we can discriminate between different

regions, however the relation between the number of itera-

tions and the content of the signal is not as clear as in the

former case. Empirically, we observed that few iterations cor-

respond mainly to speech regions, an intermediate number of

iterations corresponds mostly to noise, and more iterations

again correspond to speech regions.
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Fig. 5. (a) Binary mask after the threshold operation (2). (b)

Smoothed mask after the closing operation.

2.3. Computation of the binary mask and filtering

For the discrimination between speech and non-speech we

set two thresholds, such that the iteration map is segmented

as shown in Figure 5 (a): Region 1, in red, covers areas

mainly corresponding to speech, while region 2, in blue, cov-

ers speech and noise areas. The operation for obtaining the

mask m for each bin is

m =

{

1 if n < a or n > b
0 otherwise,

(2)

where m = 1 if there is speech, n is the number of iterations

for a specific bin in the map and a and b are the two thresh-

old values. The values for the thresholds are derived from

experiments (see Section 3).

To distinguish between noise and speech, the parts of the

blue region within speech areas have to be removed. This

is realized with techniques from image processing, namely

morphological filtering such as dilation and erosion. The con-

secutive execution of these operations results in the so-called

closing operation [13] that closes the holes in Figure 5 (a). As

structural element a disk of radius 10 is used. Figure 5 (b)

Fig. 6. Speech utterance from Figure 1 after musical noise

suppression with the mask from Figure 5 (b). White areas

mark regions where no energy is left - this can be avoided by

leaving a noise floor instead of setting the spectrogram bins

to zero.
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Fig. 7. Overall perceptual score (OPS), target perceptual score (TPS), interference perceptual score (IPS), and artifact perceptual

score (APS) computed from the development set for different values of the upper threshold b in different SNR conditions. For

the final experiments the threshold maximizing the APS was chosen.
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Fig. 8. Evaluation of overall perceptual score (OPS), target perceptual score (TPS), interference perceptual score (IPS), and

artifact perceptual score (APS) for the generalized subspace method (Subspace), the proposed post-processing method for

musical noise suppression (Post-processed), and the post-processing method from [7] (Post-proc. noisy).

shows the resulting contiguous mask, which is subsequently

applied to filter the magnitude of the STFT of the signal. Fig-

ure 6 represents the spectrogram after musical noise suppres-

sion.

2.4. Resynthesis

After filtering, the inverse Fourier transformation is applied

using the phase from the input signal. Finally, the audio signal

is synthesized using the weighted overlap-add method [14].

3. EXPERIMENTS

For the evaluation of the approach, we performed experi-

ments on a database with recordings of 6 speakers, 3 male

and 3 female. Each speaker read a list of 20 sentences, which

makes 120 sentences in total. The recording was performed

with a close-talking microphone and 16 kHz sampling fre-

quency. We performed experiments with additive white Gaus-

sian noise1 at 0, 5, 10, and 15 dB SNR, where the kernel vari-

ance for the pre-image iterations was was set to 3, 2, 0.5, and

0.25, respectively, and the regularization parameter λ was set

to 0.5. The database was split into a development and a test

1For other noise types the generalized subspace method produced less

musical noise, therefore post-processing is not necessary.

set, where the development set contains one sentence of each

speaker and the test set contains the remaining 114 sentences.

In [9], new quality measures for signals estimated by

audio source separation algorithms were proposed. They

were designed using the outcome of subjective listening tests.

These measures show an improved correlation with subjec-

tive scores compared to formerly used measures. The mea-

sures evaluate four aspects of the signal: the global quality

(OPS - overall perceptual score), the preservation of the tar-

get signal (TPS - target perceptual score), the suppression of

other signals (IPS - interference perceptual score) and the ab-

sence of additional artificial noise (APS - artifact perceptual

score). The scores range from 0 to 100, high values denote

better quality. We use these measures, because they allow for

evaluation of the amount of musical noise by looking at the

APS.

To achieve good musical noise suppression, an accurate

estimation of the speech regions is needed. The two thresh-

olds in (2) are set as follows: The lower threshold a is fixed to

1.5, as there are few iteration counts in this range and only the

interior of the speech region is affected that is properly treated

by the closing operation anyway. For the upper threshold b,
several values were tested on the development set. The one

providing the best tradeoff between OPS and APS was taken,

ensuring good quality as well as good musical noise suppres-
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sion. Figure 7 shows the results on the development set in four

noise conditions when the threshold is varied from 3 to 5. The

final values 4, 4, 4.25, and 4.5 were chosen for the noise con-

ditions of 0, 5, 10, and 15 dB SNR, respectively. For these

values, the APS is maximized and good artifact suppression,

i.e. musical noise suppression, is achieved, while the overall

quality is still in the upper range (or maximized as well).

Figure 8 shows the results for the test set with the optimal

threshold settings. The recordings with suppressed musical

noise achieve a better overall quality (OPS) than the original

enhanced recordings and than the post-processing described

in [7] for all SNR levels except of 0 dB. They also score bet-

ter in terms of absence of artifacts (APS), which confirms that

the musical noise is efficiently suppressed. Furthermore, our

approach also achieves better interference suppression (IPS),

however in terms of target preservation (TPS) it is slightly

weaker than to the original subspace method. This can be

explained by the fact, that speech components may be attenu-

ated by the application of the mask. Listening to the processed

utterances and inspection of the spectrograms (see Figure 6)

confirm that there is less musical noise after post-processing

while almost all speech components are preserved.2 Only in

the case of fricatives speech is attenuated due to the low en-

ergy - this is reflected by the score for target preservation.

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed a method for musical noise sup-

pression that relies on the knowledge gained from pre-image

iterations executed on spectral data. Properties of the under-

lying signal can be inferred from the number of iterations un-

til convergence and the spectral data can be segmented into

speech and non-speech regions. We smooth the segmentation

by applying image processing techniques and use the result-

ing binary mask to suppress musical noise in non-speech re-

gions. This method can be applied as post-processing for any

speech enhancement algorithm.

We applied the method on speech recordings corrupted by

additive white Gaussian noise at different SNRs which have

been enhanced by the generalized subspace method. For eval-

uation, we used the objective quality measures of the PEASS

toolbox, which allow for an evaluation regarding four as-

pects: overall quality, preservation of the target signal, sup-

pression of interfering signals, and absence of additional ar-

tificial noise. In terms of overall quality we achieve an im-

provement in almost all conditions. The score measuring the

absence of additional noise increases. This confirms the re-

duction of musical noise. These results are consistent with

the subjectively perceived quality that increases due to the at-

tenuation of disturbing musical noise.

2Audio examples are provided on http://www2.spsc.
tugraz.at/people/chrisl/audio/eusipco2012.
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