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ABSTRACT

The filter bank methods have been a popular non-parametric
way of computing the complex amplitude spectrum. So far,
the length of the filters in these filter banks has been set to
some constant value independently of the data. In this paper,
we take the first step towards considering the filter length as
an unknown parameter. Specifically, we derive a very simple
and approximate way of determining the optimal filter length
in a data-adaptive way. Based on this analysis, we also de-
rive a model averaged version of the forward and the forward-
backward amplitude spectral Capon estimators. Through sim-
ulations, we show that these estimators significantly improve
the estimation accuracy compared to the traditional Capon es-
timators.

Index Terms— Filter Bank Methods, Capon, Spectral Es-
timation

1. INTRODUCTION

The estimation of the complex amplitude spectrum is an im-
portant problem in several applications such as audio coding
and radar imaging (see [1] and the references therein). Sev-
eral solutions have been proposed in the literature ranging
from simple estimators based on various windowed Fourier
transforms to more complex estimators based on a paramet-
ric model of the observed data. A popular example of such a
parametric model is the sinusoidal model

x(n) =

l∑
i=1

αi exp(jωin) + w(n) , n = 1, 2, · · · , N (1)

where αi and ωi are the complex amplitude1 and the fre-
quency of the i’th complex sinusoid, respectively, and w(n)
is a stationary random process with a possibly non-flat power
spectral density (psd). Unfortunately, the parametric meth-
ods are usually very sensitive to modelling errors such as the
noise statistics [2] and may also suffer from a high compu-
tational complexity if the model has non-linear parameters
such as the frequency. Therefore, non-parametric methods

1Note that αi is not an amplitude in the usual sense since it is not a real,
positive scaler. However, in the lack of better words, we refer to it as the
complex amplitude.

may yield much better estimation results or lower the com-
putational complexity significantly. For the estimation of the
complex amplitude spectrum, the filter bank methods such as
Capon [3] and APES [4] are examples of such non-parametric
estimators which are fast and very robust to modelling er-
rors. Although the APES method was originally proposed
as an approximate maximum likelihood method, it can also
be interpreted as a matched filter bank method like the Capon
method [5]. Under this interpretation, the observed data is
passed through an m-tap FIR-filter which is designed to max-
imise the signal-to-noise ratio (SNR) of the filter output sub-
ject to the constraint that the filter has a gain of one at some
known frequency ω. The complex amplitude α at this fre-
quency is then estimated from the filter output. By designing
a filter for all desired frequency points, we get a filter bank
whose outputs are used to estimate the complex amplitudes
at all these frequency points. The statistical properties of the
Capon and APES methods have been studied extensively in,
e.g., [5–7]. These studies have shown that the APES ampli-
tude estimates are unbiased for all filter lengths, but that the
Capon estimator gives amplitude estimates which are biased
towards zero. For long filter lengths, this bias increases signif-
icantly. On the other hand, the Capon method has in general
a better resolution than APES and is therefore more practi-
cal for estimating frequencies [1]. In [4], the maximum filter
length of m = bN/2c is recommended for the APES method
since this maximises the resolution. For the Capon method,
however, there is a trade-off between resolution and bias, and
in [7] a filter length in the interval N/8 < m < N/4 is rec-
ommended. To the best of our knowledge, the filter length m
is always selected to be the same for all frequency points and
does not depend on the observed data. In this paper, we take a
first step towards determining the optimal filter length for the
Capon method in a data-adaptive way. Specifically, we give a
simple and approximate solution which is based on Djuric’s
asymptotic MAP approach [8].

2. THE AMPLITUDE SPECTRAL CAPON
ESTIMATOR

The filter bank methods are a way of bypassing some of the
difficulties associated with the parametric methods. This is
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achieved by first rewriting (1) as

x(n) = α exp(jωn) + z(n) , n = 1, 2, · · · , N (2)

where α is the complex amplitude at the known (angular) fre-
quency ω. In practice, we rarely know the true frequency
parameters {ωi}li=1 or the number l of them in (1), and these
quantities are typically hard to estimate. In the filter bank
methods, this problem is bypassed by selecting a set Ω of
R candidate frequencies for which we wish to estimate the
complex amplitude α. Comparing (2) to (1), we see that z(n)
models all the l sinusoids and the coloured noise w(n), ex-
cept for the complex sinusoid with an unknown complex am-
plitude α at the known frequency ω. We then pass this signal
through an m-tap FIR filter and obtain

y(n) = α exp(jωn)hHa+ hHz(n) . (3)

for n = m, · · · , N where we have defined

a ,
[
1 exp(−jω) · · · exp(−jω(m− 1))

]T
(4)

h ,
[
h0 h1 · · · hm−1

]H
(5)

z(n) ,
[
z(n) z(n− 1) · · · z(n−m+ 1)

]T
. (6)

The notation (·)T and (·)H denote transposition and complex
transposition, respectively. Maximising the SNR of the filter
output is equivalent to solving [5]

arg min
h∈Cm

hHQh subject to hHa = 1 (7)

whose solution is

h = (aHQ−1a)−1Q−1a . (8)

The covariance matrixQ , E{z(n)zH(n)} is unknown and
must be estimated in some way. For C , E{x(n)xH(n)}
where x(n) is defined analogously to z(n), we have that

C = |α|2aaH +Q , (9)

and a simple estimate of Q is therefore Q̂ = Ĉ − |α̂|2aaH .
Inserting this estimate in (7) yields

arg min
h∈Cm

hHĈh subject to hHa = 1 (10)

so that the Capon filter is

hCapon = (aHĈ
−1
a)−1Ĉ

−1
a . (11)

The covariance matrixC of the input vector x(n) is typically
estimated in one of two different ways. If we define K ,
N −m+ 1 and

X ,
[
x(m) · · · x(N)

]
, (12)

the forward estimate is given by

Ĉf = K−1XXH , (13)

and the forward-backward (FB) estimate is given by

Ĉfb = (Ĉf + JmĈ
T

f Jm)/2 (14)

where Jm is the m ×m exchange matrix. Like the true co-
variance matrix, Ĉfb is persymmetric and simulation results
have shown that it reduces the bias of the complex amplitude
estimate significantly compared to Ĉf [6]. However, the reso-
lution is slightly better for Ĉf [9]. The APES filter can be de-
rived by using a different estimate of Q, which can be found
in [5], and it also exists in a forward and a FB version [6].

Due to the constraint hHa = 1, we can write the filter
output in (3) in vector form as

y = XTh∗ = αb+ e (15)

where (·)∗ denotes complex conjugation and

y ,
[
y(m) · · · y(N)

]T
(16)

e(n) , hHz(n) (17)

e ,
[
e(m) · · · e(N)

]T
(18)

b ,
[
exp(jωm) · · · exp(jωN)

]T
. (19)

The least squares estimate of the complex amplitude is then

α̂m = K−1hHXb∗ (20)

where we have used the subscript m to indicate the length
of the filter. When the Capon filter is used in (20), we term
the resulting estimator as the amplitude spectral Capon (ASC)
estimator.

3. THE MODEL AVERAGED ASC ESTIMATOR

To estimate the optimal filter length, we first briefly review
the asymptotic MAP approach by Djuric [8]. In his frame-
work, we wish to find the posterior distribution p(m|x) on
the filter length m given the K data points in the vector x.
This distribution is by Bayes’ theorem given by

p(m|x) ∝ p(x|m)p(m) (21)

where ∝ denotes ’proportional to’, and p(x|m) is referred to
as the model likelihood or evidence which is given by

p(x|m) =

∫
Θm

p(x|θm,m)p(θm|m)dθm (22)

where θm denotes the dm model parameters with support
Θm, p(x|θm,m) is the likelihood, and p(θm|m) is the prior
on the model parameters under model index m. Unfortu-
nately, the integral in (22) can in general not be evaluated
analytically, so Djuric suggests that the integral is approxi-
mately evaluated using the Laplace approximation. Provided
that θ is purely complex, the Laplace approximation gives

p(x|m) ≈ f(θ̂m)πdm | −H(θ̂m)|−1 (23)
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where f(θm) , p(x|θm,m)p(θm|m) is the integrand of
(22), θ̂m is the MAP estimate of θm, and

H(θm) =
∂2 ln f(θm)

∂θ∗m∂θ
T
m

(24)

is the Hessian matrix. Djuric also suggests that we simplify
(23) by neglecting the terms of order O(1) and by evaluating
the determinant of the observed information matrix−H(θ̂m)
using asymptotic considerations. Specifically, for the linear
Gaussian model x = Fmθm + e and for a uniform prior on
the model index and the model parameters, Djuric approxi-
mates p(m|x) on the model index by [8]

p(m|x) ∝ (σ̂2)−K |FH
mFm|−1 (25)

where σ̂2 is the maximum likelihood estimate of the noise
variance. The asymptotic approximation of |FH

mFm| de-
pends on the particular structure of Fm.

3.1. Derivation

To construct a simple way of selecting the optimal filter
length, we first integrate the constraint hHa = 1 into the
filter vector. Specifically, we write h0 = 1− ãH h̃ with

h̃ ,
[
h1 h2 · · · hm−1

]T
(26)

ã ,
[
exp(jω) exp(jω2) · · · exp(jωm)

]T
(27)

so that the constraint hHa = 1 is satisfied for all h̃. This
leads to that

y = XTh∗ = x1 − Fmh̃ (28)

where we have defined

x1 ,
[
x(m) · · · x(N)

]T
(29)

Fm ,XT

[
ãH

−Im−1

]
. (30)

where Im−1 is the (m− 1)-dimensional identity matrix. We
now assume that x1 is independent of Fm and that y is a
white Gaussian noise vector, so that x1 = Fmh̃ + y is our
simple linear model. Although this is in direct contradiction
with the model of the filter output in (15), it is a necessary as-
sumption to derive the ASC estimator in our framework. The
APES estimator would be obtained instead if y was replaced
by (15) and e was assumed to be a white Gaussian noise. Un-
der the assumption that y ∼ CN (y; 0, σ2IK), where σ2 is
the noise variance, the likelihood is approximately given by

p(x1|x0,h, σ
2) ≈ (πσ2)−K exp

{−K
σ2

S(h)

}
(31)

where x0 =
[
x(1) · · · x(m− 1)

]T
and

S(h) , hHĈfh = K−1(x1−Fmh̃)H(x1−Fmh̃) . (32)

For non-informative and flat priors, the MAP estimates of the
noise variance and the filter coefficient are equal to the maxi-
mum likelihood estimates which are

σ̂2 = S(ĥ) = (aHĈ
−1

f a)−1 (33)

ĥ = hCapon = σ̂2Ĉ
−1

f a . (34)

The determinant |FH
mFm| can be written as

|FH
mFm| = Km−1

∣∣∣∣[ã −Im−1

]
Ĉ
∗
f

[
ãH

−Im−1

]∣∣∣∣ . (35)

Since the last factor does not grow with K, the asymptotic
approximation is |FH

mFm| ≈ Km−1. Thus, (25) gives

p(m|x) ∝ S(ĥ)−KK−(m−1) (36)

which is the same as the Bayesian information criterion (BIC)
or Schwarz criterion [10].

We use the approximate expression for p(m|x) to com-
pute the amplitude estimate averaged over all models. We
call this estimator for the model averaged amplitude spectral
Capon (MAASC) estimator, and it is given by

α̂ =

bN/2c∑
m=1

p(m|x)E{p(α|x,m)} =

bN/2c∑
m=1

p(m|x)α̂m .

(37)
Thus, the MAASC estimate is a weighted sum of the ASC
estimates for each filter lengths with the weight determined
by the probability of each filter length. As with the ASC esti-
mate, the MAASC estimate can be computed using either the
forward or the forward-backward covariance matrix estimate.

4. ITERATIVE COMPUTATION OF THE INVERSE
COVARIANCE MATRIX

The major contribution to the computational complexity in
the ASC estimator is the inversion of the covariance matrix
estimate. For the MAASC estimator this contribution is even
more pronounced as we have to do the inversion for every fil-
ter length. In this section, we derive an iterative algorithm for
computing the inverse of the forward estimate of the covari-
ance matrix.

For any filter length m, it follows from (13) that the for-
ward estimate of the covariance matrix scaled by a factor of
K isXmX

H
m whereXm is defined in (12). This scaled esti-

mate is related toXm+1X
H
m+1 by

Xm+1X
H
m+1 =

[
qm+1 rHm+1

rm+1 Dm+1

]
(38)

where we have defined

qm+1 , xH
1 x1 − |x(m)|2 (39)

rm+1 ,
[
0 Xm

] [x∗1
0

]
(40)

Dm+1 ,XmX
H
m − x(N)xH(N) . (41)
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Fig. 1. The optimal filter length as a function of the frequency.
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Fig. 2. The amplitude estimate for various estimators. The
filter length for the fb-ASC and the fb-APES was K = 32.

Using blockwise matrix inversion, (Xm+1X
H
m+1)−1 is

(Xm+1X
H
m+1)−1 =

[
λm+1 φH

m+1

φm+1 Ψm+1

]
(42)

where we have defined

λm+1 , (qm+1 − rHm+1D
−1
m+1rm+1)−1 (43)

φm+1 , −λm+1D
−1
m+1rm+1 (44)

Ψm+1 ,D−1
m+1 + λ−1

m+1φm+1φ
H
m+1 . (45)

The inverse ofXm+1X
H
m+1 is related the inverse ofXmX

H
m

throughD−1
m+1 which can be written as

D−1
m+1 = [XmX

H
m − x(N)xH(N)]−1 (46)

= (XmX
H
m)−1 (47)

+
(XmX

H
m)−1x(N)xH(N)(XmX

H
m)−1

1− xH(N)(XmX
H
m)−1x(N)

by using the matrix inversion lemma. Thus, we can iteratively
compute the inverse of the forward estimate of the covariance
matrices for all filter lengths without doing any matrix inver-
sions. Whether a similar algorithm for the FB estimate of the
covariance matrix exists or not is still an open issue.

5. SIMULATIONS

We evaluate the f-MAASC and the fb-MAASC estimators on
the same synthetic signal as used in [5]. This signal is the sum
of 13 sinusoids at the angular frequencies 2π(0.0625, 0.0875,

0.25, 0.285, 0.33, 0.35, 0.37, 0.39, 0.41, 0.43, 0.45, 0.47,
0.49), and these frequencies are marked with at dashed line
in Fig. 1. All the sinusoidal components have a phase of π/4,
and the amplitudes of the sinusoids are 1 for the first three,
0.3 for the fourth, and 0.1 for the rest. Our data set consists
of N = 64 observations from a noise corrupted version of
the sinusoidal signal where the noise is complex, white, and
Gaussian with variance σ2. As in [5], we define the signal-
to-noise ratio (SNR) of the signal as the local SNR of the first
sinusoid

η , 10 log10(|α1|2σ−2) . (48)

Fig. 1 shows the MAP estimate m̂ of the model index as a
function of the frequency ω. We see that m̂ is large when
ω is close to one of the sinusoidal components whereas m̂ is
small when ω is either at a sinusoidal component or far away
from one of the sinusoidal components. This is reasonable as
a very long filter is necessary to filter out a sinusoidal com-
ponent close to ω. On the other hand, a short filter length at
a sinusoidal component means that the output vector y has
more elements so that we may estimate the complex ampli-
tude with a higher accuracy.

In Fig. 2, an example of the estimated amplitude spec-
trum is shown at the first sinusoidal component for an SNR
of 20 dB. Despite the fact that the f-MAASC and fb-MAASC
estimators are model averaged estimators, their resolution is
only slightly worse than the resolution of the fb-ASC estima-
tor with a maximum filter length of K = 32. However, the
resolution was better than for the fb-APES estimator.

Based on 500 Monte Carlo iterations, the mean squared
errors (MSE) at the first sinusoidal component for the esti-
mates of the real and complex part of the complex amplitude,
the amplitude, and the phase are shown and compared to
the asymptotic Cramer-Rao lower bound (CRLB) in Fig. 3.
Clearly, the f-MAASC and fb-MAASC estimators signif-
icantly reduce the MSE of the corresponding f-ASC and
fb-ASC estimators. Other simulations have shown that this
reduction comes from a reduction in both the bias and the
variance. Although the maximum filter length of K = 32
is not a recommended length of the ASC-filters (see Sec. 1),
we used this length in our simulations to see how much the
bias was lowered by the MAASC-estimators while still hav-
ing nearly the same resolution as demonstrated in Fig. 2.
If the filter length is reduced, the MSE-performance of the
ASC-filters also improves significantly, but at the expense of
a coarser resolution.

Note that the f-APES and the fb-APES can also be cast
in a model averaged framework. However, we observed only
minor improvements in the MSE at the cost of a slightly worse
resolution and a higher computational complexity. On the
other hand, the model averaging attenuates the line-splitting
(see Fig. 2) in the APES estimate of the amplitude spectrum.
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Fig. 3. The mean squared error (MSE) for various estimators based on 500 Monte Carlo iterations. The filter length for the
f-ASC, the fb-ASC, the f-APES, and the fb-APES was K = 32.

6. CONCLUSION

In this paper, we have proposed a data-adaptive way of deter-
mining the filter length of the Capon filter. The adaptation was
based on the approximate MAP approach by Djuric, and it led
to a very simple way of computing an approximate posterior
distribution for the filter length. Based on this posterior dis-
tribution, we also derived a model averaged amplitude spec-
tral Capon estimator for both the forward and the forward-
backward estimate of the covariance matrix. For nearly the
same resolution, simulations on a synthetic signal showed that
the f-MAASC and fb-MAASC significantly lowered the mean
squared error of the complex amplitude estimates as com-
pared to the traditional forward and forward-backward am-
plitude spectral Capon estimators, respectively.
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