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ABSTRACT

As a member of the exponential family, the Dirichlet distri-
bution has its conjugate prior. However, since the posterior
distribution is difficult to use in practical problems, Bayesian
estimation of the Dirichlet distribution, in general, is not an-
alytically tractable. To derive practically easily used prior
and posterior distributions, some approximations are required
to approximate both the prior and the posterior distributions
so that the conjugate match between the prior and posterior
distributions holds and the obtained posterior distribution is
easy to be employed. To this end, we approximate the dis-
tribution of the parameters in the Dirichlet distribution by a
multivariate Gaussian distribution, based on the expectation
propagation (EP) framework. The EP-based method captures
the correlations among the parameters and provides an easily
used prior/posterior distribution. Compared to recently pro-
posed Bayesian estimation based on the variation inference
(VI) framework, the EP-based method performs better with a
smaller amount of observed data and is more stable.

Index Terms— Dirichlet distribution, Bayesian estima-
tion, Expectation Propagation, Variational Inference

1. INTRODUCTION

In parametric statistical modeling study, parameter estimation
plays an important role [1]. With the observed data, we as-
sume that the observations are following a specified distribu-
tion and estimate the parameters to describe the probability
density function (PDF) of this distribution. There are several
ways to fit the parameters. The method of finding suitable
values of the parameters by maximizing the likelihood func-
tion is named the maximum likelihood estimation (MLE). If
we treat the parameters as random variables, the Bayesian es-
timation method can be applied to obtain the distributions of
the parameters. The Bayesian estimation has several advan-
tages over the MLE: 1) the Bayesian estimation not only pro-
vides some representative values (e.g., the mode, the mean)

but also describes the distributions of the parameters and 2)
the Bayesian estimation can prevent the overfitting problem,
which is in general a drawback of the MLE. Generally speak-
ing, Bayesian estimation is more reliable than the MLE, es-
pecially when the amount of observed data is small.

The Gaussian distribution is the frequently used proba-
bility distribution in statistics. However, not all the data we
would like to model are Gaussian distributed [2], due to the
natural properties of the data. For example, the digitalized
image pixel values are bounded within a fixed interval, the
magnitude of the speech spectrum, which is nonnegative, is
semi-bounded, and the line spectral frequency parameters are
bounded and ordered. To explore such properties of the data,
some non-Gaussian statistical models, e.g., the beta distribu-
tion [3], the gamma distribution [4], the Dirichlet distribu-
tion [5], were applied to describe the underlying distributions
of such type of data and shown to be more efficient than the
conventional Gaussian distribution based method.

The Dirichlet distribution is usually used to describe the
underlying distribution of proportional data [6]. In several
studies, the Dirichlet distribution based method was shown
to be superior to the Gaussian distribution based method
(see e.g., [5]). Due to the integral expression of the gamma
function and its corresponding derivatives, the MLE of the
Dirichlet distribution is not analytically tractable [5]. Even
though the conjugate prior of the Dirichlet distribution ex-
ists [7], the obtained posterior distribution cannot be easily
used in practical problems. To derive an analytically tractable
solution for Bayesian estimation, we proposed a variational
inference (VI) framework [1] based method to approximately
calculate the prior and posterior distributions of the Dirich-
let distribution [7]. By assuming that the parameters in the
Dirichlet distribution are mutually independent, a gamma
distribution was assigned to each parameter (the parameters
are all nonnegative) and an analytically tractable solution was
obtained by using some non-linear lower-bound approxima-
tions. The proposed method works well, especially when
the amount of observed data becomes larger. A similar ap-
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proach was also applied in [3] for Bayesian estimation of beta
distribution.

However, in the proposed VI-based method, the assump-
tion of mutual independence violated the correlations among
those parameters. When the amount of observed data is small,
the shape of the parameters’ joint distribution, which is infor-
mative in such case, cannot be captured efficiently by the VI-
based method. To describe the correlation properly, in this
paper, we assume that the joint prior distribution of all the
parameters is multivariate Gaussian. By the principles of ex-
pectation propagation [1], we update each factor multivari-
ate Gaussian distribution with the message from a observed
data. The importance sampling (IS) method [1] is utilized in
the updating procedure to calculate the sufficient statistics of
the multivariate Gaussian distribution. Finally, a multivari-
ate Gaussian distribution, which is the product of the entire
factor multivariate Gaussian distributions, is obtained to ap-
proximate the posterior distribution of the parameters.

Unlike the VI-based method [7], the proposed EP-based
method discovers the correlation among the parameters, al-
though the nonnegativity of the parameters is violated1. When
the amount of observed data is small, the shape of the pos-
terior distribution, which describes the correlations among
the parameters, is more important and representative than the
point estimate (e.g., the mean). As the number of observed
data increases, the true posterior distribution will concentrate
around the mode (the posterior distribution is unimodally dis-
tributed). Both the EP- and the VI-based methods can approx-
imate the posterior distribution efficiently.

The performance of the EP-based method is evaluated and
compared to the VI-based method, with several criteria. Ex-
perimental results show that the EP-based method can ap-
proximate the posterior distribution more accurate than the
VI-based method, especially with smaller amount of observed
data. Furthermore, the EP-based method performs more sta-
ble than the VI-based method, as it combines the messages
contributed from all the observed data.

2. BAYESIAN ESTIMATION OF THE DIRICHLET
DISTRIBUTION

For a vector x = [x1, x2, . . . , xK ]T , if all the elements
xk, k = 1, 2, . . . ,K are nonnegative and the summation
of these elements equals one, the underlying distribution of
this vector can be modeled by a K-dimensional Dirichlet
distribution2, which has a PDF as

f(x) = Dir(x;α) =
Γ(

∑K
k=1 αk)∏K

k=1 Γ (αk)
x
αk−1
k , αk > 0, (1)

1The parameters generated from the obtained multivariate Gaussian pos-
terior distribution have a very low probability to be negative. Also, the mean
of the multivariate Gaussian posterior distribution is always positive so that
we can take it as the point estimate.

2x can also be interpreted as the sample mean of a categorical multivariate
distribution.

where α = [α1, α2, . . . , αK ]
T is the parameter vector con-

tains all the free parameters and Γ(·) is the gamma func-
tion defined as Γ(z) =

∫∞
0

tz−1e−tdt. To be noted, a K-
dimensional Dirichlet vector variable has K − 1 degrees of
freedom. A Dirichlet distribution is unimodally distributed if
all the parameters αk, k = 1, 2, . . . ,K , are greater than one.
Since it is the typical case, we only study the Dirichlet distri-
bution with all the parameters greater than one in this paper.

2.1. Conjugate Prior

As a member of the exponential family [1], the conjugate
prior for the Dirichlet can be denoted as

f(α;β0, ν0) =
1

C (β0, ν0)

[
Γ(

∑K
k=1 αk)∏K

k=1 Γ(αk)

]ν0

e−βT
0 (α−1K), (2)

where β0 = [β10 , . . . , βK0 ]
T and ν0 are the hyperparameters

in the prior distribution. Here, C (β0, ν0) is the normaliza-
tion factor and 1m denotes an m dimensional vector with all
elements equal one. With Bayes’ theorem and combining (1)
and (2) together, we can obtain the posterior distribution of
the parameters, given the observation X = [x1, . . . ,xN ], as3

f (α|X;βN , νN ) =
Dir (X|α) f (α;β0, ν0)∫
Dir (X|α) f (α;β0, ν0) dα

=
1

C (βN , νN )

[
Γ(

∑K
k=1 αk)∏K

k=1 Γ(αk)

]νN

e−βT
N (α−1K),

(3)

where βN = β0 − lnX× 1N , νN = ν0 +N are the hyper-
parameters in the posterior distribution. Due to the integral
expression of the gamma function, some statistics (e.g., the
mean vector, the covariance matrix) of the parameter α can-
not be obtained by analytically tractable expression. Thus, an
approximation is required to approximate the prior/posterior
distribution so that a closed-form expression can be derived.

2.2. Bayesian estimation with Variational Inference

Assuming that the elements in α are mutually independent, a
gamma prior was assigned to αk, k = 1, 2, . . . ,K in [7]. By
the principles of the VI framework [1], the prior distribution
of α in (2) is approximated by a product of several gamma
densities as

f(α) ≈ g(α) =
K∏

k=1

Gam(αk ; ak0
, bk0

), (4)

where
Gam(x; a, b) =

ba

Γ(a)
xa−1e−bx. (5)

The posterior distribution was also approximately be a prod-
uct of gamma densities accordingly.

3To prevent any confusion, we use f(x; a) to denote the PDF of x pa-
rameterized by a. f(x|a) is used to denote the conditional PDF of x given
a, where both x and a are random variables. Both f(x; a) and f(x|a) have
exactly the same mathematical expressions.
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The VI framework tries to minimize the Kullback-Leibler
(KL) divergence of the true posterior distribution f(α|X)
from the approximating distribution g(α) as

g∗(α) =arg min
g(α)

{KL(g ‖ f)}

=arg min
g(α)

{∫
g(α) ln

g(α)

f(α|X)
dα

}
.

(6)

With non-linear lower-bound approximations, an analytically
tractable solution was obtained to calculate the approxima-
tions of the posterior distribution [7]. According to [3, 7], it is
reasonable to take the posterior means of the gamma densities
as the point estimates of α. When the amount of observation
is large, the point estimates become accurate.

However, the VI-based method assumed the mutually in-
dependence within the vector variable α, which violated the
correlation among the elements in α. Thus, the shape of the
obtained approximation is different from the true one. The
difference can be neglected only when the true posterior dis-
tribution has a sharp shape and concentrates around its mode.

2.3. Bayesian estimation with Expectation Propagation

The EP is a revised version of the assumed density filtering
(ADF), which is a one-pass technique for approximating the
posterior distribution in Bayesian analysis [8]. The perfor-
mance of ADF severely depends on the ordering of the input
data. Instead of the one-pass pattern, the EP-based method
goes through all the data iteratively and refines each factor
distribution based on all the other factors once a time. Thus
the EP-based method dose not suffer from the ordering effect
of the input data.

In the EP framework, the posterior distribution of α is
factorized as a product of factor distributions as

f(α|X) ∝
N∏

n=0

fn(α), (7)

where f0(α) is the prior distribution and fn(α) = f(xn|α),
n ≥ 1, is the likelihood function of α given the nth obser-
vation xn. The EP-based method employs g(α), which is
assumed to be a product of several factor distributions as

g(α) ∝
N∏

n=0

gn(α), (8)

to approximate the true posterior distribution. By minimizing
the KL divergence of g(α) from f(α|X), an optimal solution
can be obtained as

g∗(α) =arg min
g(α)

{KL(f ‖ g)}

=arg min
g(α)

{∫
f(α|X) ln

f(α|X)

g(α)
dα

}
.

(9)

It can be observed that the EP-based method is different from
the VI-based method. These two methods minimize different
forms of the KL divergence and different optimal approxima-
tions can be obtained. This difference is illustrated in Fig. 1.
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Fig. 1. Illustration of the VI- and EP-based methods. The green
(narrow) curve is the VI-based approximation and the blue (broad)
curve is the EP-based approximation. The yellow (shadow) shape
shows the true distribution. (Figure is copied from [1, p. 508]).

The approximation obtained by the VI-based method is nar-
rower than the true distribution while that obtained by the EP-
based method is broader. It is the consequence of preventing
ln ε

0 in the KL expression.

2.3.1. EP Algorithm

The EP framework makes a robust approximation by optimiz-
ing each factor distribution gn(α) in turn with all the other
factor distributions fixed. A factor distribution gi(α), i =
0, 1, . . . , N is removed to get an unnormalized distribution

g\i(α) =
N∏

n=0,n�=i

gn(α). (10)

Then this nunormalized distribution is combined with the ith
likelihood function fi(α) to get a new unnormalized distribu-
tion g̃(α) as

g̃(α) = g\i(α)fi(α). (11)

By the technique of moment matching, a new approximation
gnew(α), which has the same distribution as g(α), is obtained
by setting the sufficient statistics of gnew(α) equal to those of
g̃(α). Then the removed factor is updated as

g*
i (α) ∝ gnew(α)

g\i(α)
. (12)

With the above steps, the factors gi(α), i = 0, 1, . . . , N will
be updated iteratively till converge. Finally, the optimal ap-
proximation g∗(α) can be obtained by

g∗(α) ∝
N∏

n=0

g*
n(α). (13)

2.3.2. Approximation by Multivariate Gaussian Distribution

To (approximately) capture the correlation of α in (3), we
assume that each factor gi(α) in (8) is multivariate Gaussian
distributed as

gi(α) = N (α;mi,Σi)

=
1

√
2π

K√|Σi|
exp

[
−1

2
(α−mi)

TΣ−1
i (α−mi)

]
.

(14)

Then the approximation, which is a product of several mul-
tivariate Gaussian distributions, is again a multivariate Gaus-
sian distribution as

g(α) =

∏N
n=0 N (α;mn,Σn)∫ ∏N
n=0 N (α;mn,Σn)dα

= N (α;m,Σ), (15)
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Algorithm 1 EP-based algorithm
Input: Observation X = [x1,x2, . . . ,xN ] from a Dirichlet distribution
Initialize: N + 1 multivariate Gaussian factor distributions;
repeat

for each i = 0, 1, 2, . . . , N ,
refine the ith factor distribution by the methods described in (16)-(20);

until stop criterion is reached.
Calculate the mean vector and covariance matrix of the multivariate Gaus-
sian approximation by combining N + 1 optimal factor distributions.
Output: The optimal multivariate Gaussian approximation.

where m = Σ
∑N

n=0(Σ
−1
n mn) and Σ−1 =

∑N
n=0 Σ

−1
n . By

removing the ith factor from g(α), we have

g\i(α) ∝ N (α;m\i,Σ\i), (16)

where m\i = Σ\i
(∑N

n=0,n�=i Σ
−1
n mn

)
= Σ\i

(
Σ−1m

−Σ−1
i mi

)
and Σ−1

\i =
∑N

n=0,n�=i Σ
−1
n = Σ−1 −Σ−1

i . The
unnormalized distribution in (11) writes

g̃(α) = N (α;m\i,Σ\i)Dir(xi|α). (17)

Here, we utilized the IS method [1] to get the sufficient
statistics of g̃(α) in (17), because g̃(α) is unnormalized. To
make the IS method work properly, we need to choose a ref-
erence distribution, which is easily to be sampled from and
has a close shape to g̃(α). To this end, we firstly apply the
Laplace approximation to approximate g̃(α) by a multivariate
Gaussian ğ(α) and then sample L samples α1,α2, . . . ,αL

from the obtained multivariate Gaussian distribution to cal-
culate the weight of each sample as wl = rl/

∑L
l=1 rl, rl =

g̃(αl)/ğ(αl). Finally, the 1st and 2nd moments of g̃(α) can
be obtained numerically by

E [α] �
L∑

l=1

wlαl, E
[
ααT

]
�

L∑
l=1

wlαlα
T
l (18)

and the mean vector and covariance matrix of the newly ob-
tained approximation gnew(α), which is again a multivariate
Gaussian distribution, are

mnew = E [α] , Σnew = E
[
ααT

]
−mnew (mnew)T . (19)

The larger L is, the more accurate the numerically calcula-
tion is. Although the Laplace approximation ğ(α) itself is
a multivariate Gaussian distribution, obtaining g∗(α) by IS
and moment matching is more accurate than directly setting
g∗(α) = ğ(α), since the Laplace approximation captures the
mode vector instead of the mean vector.

According to (12), the removed factor gi(α) can now be
updated by a multivariate Gaussian distribution as

g∗i = N (α;m∗
i ,Σ

∗
i ), (20)

wherem∗
i = Σ∗

i

[
(Σnew)

−1
mnew − (

Σ\i
)−1

m\i
]

and(Σ∗
i )

−1

= (Σ∗)−1−(
Σ\i

)−1
. The above obtained covariance matrix

Σ∗
i might be illy structured (i.e., the covariance matrix is

not semi-positive definite). In that case, we keep this factor
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(b) N = 50.
Fig. 2. Illustration of VI- and EP-based approximations. Data were
generated from the Dirichlet distribution with α = [3 5 8]T . The
red cross shows the true α. The black dot is the mode of the corre-
sponding distribution.

distribution unchanged in this iteration and update it in the
next one.

Unlike the ADF, which is a one-pass method, the EP-
based algorithm will go through all the observed data and re-
peat the above steps to update all the factors till convergence
reached. After convergence, the approximation will not be
affected by the order of the input data. In principle, the EP-
based method is not guaranteed to converge [1]. However, for
the distribution belongs to the exponential family, if the itera-
tion converges, the resulting solution will be a stationary point
of a particular energy function. In our implementation of the
EP-based algorithm for Bayesian estimation of the Dirichlet
distribution, the algorithm converges in most cases. The pro-
posed EP-based algorithm is briefly described in algorithm 1.

3. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed EP-based algorithm was evaluated with the data
generated from the Dirichlet distribution. We compare the
EP-based method with the VI-based method [7], which is an-
other method for Bayesian estimation of the Dirichlet dis-
tribution. Since these two methods minimize the KL diver-
gences in different forms, these two methods have different
properties. We will compare these two methods by both visu-
alization and quantitative measurement.

3.1. Illustration of Different Approximations

The two-fold reasons that we choose multivariate Gaussian
distribution here to approximate the posterior distribution are:
1) an analytically tractable solution can be derived for updat-
ing the factor distributions and 2) the multivariate Gaussian
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distribution can (approximately) capture the correlation of the
true posterior distribution.

To illustrate the differences, we generated a set of data
from a given Dirichlet distribution and approximate the true
posterior distribution by the EP- and VI-based methods, re-
spectively. Fig. 2 shows an example of the comparisons. It
can be observed that, in both cases (N = 10 and N = 50)
the EP-based method captures the correlations among the el-
ements in α better than the VI-based method. The VI-based
method, which assumes the independence among the ele-
ments in α, can only approximate the mode of the true poste-
rior distribution. As the number of observations increases, the
true posterior distribution, the approximation obtained by the
VI, and the approximation obtained by the EP are all concen-
trated around the mode, thus both the VI-based method and
the EP-based method can lead to reasonable point estimates,
with sufficient large amount of data.

3.2. Quantitative Comparisons

For quantitative comparisons, the Absolute Evidence Differ-
ence Ratio (AEDR) was used as the criterion4. This quantity
was evaluated with different Dirichlet distribution parameter
settings and for each setting, the mean values of 50 rounds of
simulations are reported.

The AEDR, which is defined as

AEDRm =
|fm(X) − ftrue(X)|

ftrue(X)
× 100%, m ∈ {VI,EP}, (21)

is the measurement for the relative model evidence differ-
ence between the VI-/EP-based method and the true one. The
AEDR indicates how close is the approximation to the true
one. Thus the model yields smaller AEDR is preferred. The
model evidence fm(X) is calculated as

fm(X) =

∫
f(X|α)gm(α)dα, m ∈ {VI,EP}, (22)

where gm(α) is the posterior distribution obtained by the cor-
responding method. It should be noted that, in the calcu-
lation of the model evidence, we firstly estimated the pos-
terior distribution gm(α) with N samples generated from a
given Dirichlet distribution. Then another 100 samples (i.e.,
X in (21) and (22)) were generated from the same distribution
as the upcoming observation. Thus, the posterior distribution
obtained from theN samples can be considered as the “prior”
distribution for the new data X. The true model evidence was
also calculated in a similar way. Here, since the integration is
not analytically tractable, we utilized the rejection sampling
method [1] to generate the data from the posterior distribution
and then calculated the model evidence numerically. Fig. 3
shows the comparisons of the AEDRs. The EP-based method
outperforms the VI-based method, with small amounts (e.g.,
N < 50) of observed data. This is because that the EP-based
method captured the correlation, which is informative when

4As the VI and the EP minimize different forms of the KL divergence, it
is unfair to compare these methods by the KL divergence.
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(b) α = [6 8 4 10 3]T .
Fig. 3. Comparisons of AEDRs obtained by the VI-based method
and the EP-based method. Due to the limitation of space, we show
only two examples here. Similar performances can also be observed
for other parameter settings.

the shape of the posterior distribution is broad (the amount
of the observation is small). As expected, both methods lead
to efficient approximations as the amount of observation in-
creases and the difference between these two methods cannot
be distinguished. The EP-based method is also more stable
(the AEDR is smaller than 1.5%) than the VI-based method.

Similar as the VI-based method, the proposed EP-based
method can be extended to a mixture of Dirichlet distribu-
tions, for modeling the multimodally distributed real-life data.

4. CONCLUSION

The EP-based Bayesian estimation method for the Dirichlet
distribution was proposed. The posterior distribution of the
parameters in the Dirichlet distribution was approximated
by a multivariate Gaussian distribution, so that the corre-
lations among the parameters are approximately captured.
Compared to the recently proposed VI-based method, the EP-
based method performs better, especially when the amount of
observations is small. Also, the performance of the EP-based
method is more stable than that of the VI-based method.
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