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ABSTRACT
This paper describes the image registration block devel-

oped in the hepatic planner HepaPlan. The proposed method
is intended to support clinical decisions about treatment of
liver pathologies. The initial stage is the segmentation of the
liver tissue as well as its internal structures and tumours in
contrast-enhanced CT volumes. The second stage is non-rigid
motion compensation due to CT data are acquired at different
times, in arterial phase and venous phase. This image regis-
tration is necessary in order to fusion contrast-enhanced CT
data and then to ease 3D volumetric measures, visualization
of the liver and tumour, and to make comparisons with studies
of the same patient at earlier times.

Index Terms— Variational image registration, non-rigid
deformation, contrast-enhanced liver CT.

1. INTRODUCTION

Hepatocellular carcinoma is responsible for a large proportion
of liver cancers. Nowadays it is the sixth most common can-
cer in the world as well as the most common cause of death
among cirrhotic patients and also the third cause of death from
neoplasia. The most effective treatment to alleviate this dis-
ease is liver transplantation, with good results in a high per-
centage of cases [1].

Currently, the specialist uses magnetic resonance imag-
ing (MRI) or computed tomography (CT) images, in addition
to their knowledge and experience, to give the diagnosis, plan
the treatment, as well as to track the evolution over time of the
pathology in the patient. HepaPlan is a research and develop-
ment (R&D) project† which is intended to assist the physician
in these three phases, providing a tool to quantitatively clas-
sify the diseases with the highest degree of objectivity while
allowing a three-dimensional view of the liver structure. Hep-
aPlan consists of a segmentation block, a registration block
and a measurement block. This paper focuses on the non-
rigid registration method, a constitutive block of HepaPlan.
∗This work is partially supported by Ministerio de Ciencia e Innovación,

under grant TEC2009-12675/TEC.
†This work has been supported by the project ONCOTIC (IDI-20101153)

of CDTI and Hospital Clı́nica Benidorm.

For many years, researchers have developed and imple-
mented registration algorithms for medical imaging applica-
tions. In [2], non-rigid registration techniques are evaluated
on thoracic CT images. Particularly, the liver segmentation is
an open challenge [3], which provides an interesting setting
for comparing image registration methods. A novel collec-
tion of medical image registration algorithms in C++ based
on ITK [5] can be found in [4]. However, this collection
restricts non-rigid transformations to B-spline models [6] or
physical model-based splines [7], not taking into account non-
parametric registration methods (i.e. the approach proposed
in this paper or [8],[9]).

In this paper we analyze tri-phase 3D computed tomog-
raphy datasets under contrast agent injection. The liver has
arteries, hepatic veins and portal veins. This third blood ves-
sel system drains venous blood from the entire gastrointesti-
nal tract. 3D datasets are acquired at different times depend-
ing on the arrival time of the contrast agent in arteries, por-
tal and hepatic veins. First, a study without contrast agent
is acquired. Once the contrast agent is injected, it reaches the
arteries (arterial phase), then the portal veins and next the hep-
atic veins (both in hepatic venous phase). Hepatic and portal
veins are then visible in the hepatic venous phase.

Although the acquisition of the different phases is con-
tinuous, there is no exact correspondence between them, so
they must be registered in order to show the results in a com-
mon 3D scenario. This provides objective parameters of the
pathology which facilitate comparisons between patients, the
tracking of tumours [10], to make calculations on the volume
of the liver to be preserved prior to a liver resection [11] or to
generate vessel models for planning surgical procedures [12].

In this work we track the non-rigid deformation that un-
dergoes in the different phases of contrast-enhanced CT data
of the liver. This allows to locate exactly the vessels in 3D at
each phase of contrast-enhanced CT data in order to measure
distances and volumes. The method is based on an efficient
implementation of variational image registration, which is at
least two times faster than other approaches in the spatial do-
main [13].
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2. VARIATIONAL IMAGE REGISTRATION

Image registration is the process of finding out the global
and local correspondence between two images, template T
and reference R, of a scene in such a way that the trans-
formed template and reference match [14]. In this applica-
tion the images are 3D datasets obtained from CT studies,
R, T : R3 → R, and the registration will produce a non-
rigid displacement field u : R3 → R3 that will make the
transformed template dataset similar to the reference dataset,
T (x−u(x)) ≈ R(x), where u(x) = (u1(x), u2(x), u3(x))

>

and x is the spatial position x = (x1, x2, x3) ∈ R3.
The non-parametric registration can be approached in

terms of the variational calculus, by defining the joint energy
functional to be minimized:

J [u] = D[R, T ;u] + αS[u]. (1)

The energy term D measures the distance between the de-
formed template dataset and the reference dataset; S is a
penalty term which acts as a regularizer and determines the
smoothness of the displacement field; and α > 0 weights the
influence of the regularization.

The distance measure D is chosen depending on the
datasets to be registered. When dealing with datasets from
different sources or modalities (multimodal registration),
statistical-based measures are more appropriate. In this appli-
cation the correlation ratio [15] has been used.

The regularization term S gives the smoothness charac-
teristics to the displacement field [8]. In our case we use
the diffusion term, which is given by the energy of first or-
der derivatives of u:

Sdiff[u] =
1

2

3∑
l=1

∫
R3

‖∇ul‖2 dx. (2)

As described in [9], the joint energy functional (1) can be
translated into the frequency domain by means of Parseval’s
theorem, then J [u] = J̃ [ũ], where

J̃ [ũ] = D̃[R̃, T̃ ; ũ] + α S̃[ũ], (3)

with ũ(ω) = (ũ1(ω), ũ2(ω), ũ3(ω))> being the frequency
counterpart of the displacement field, ω = (ω1, ω2, ω3) is
the three dimensional variable in the frequency domain, and
where the distance measure D̃ and the regularization term S̃
are now defined in the frequency domain.

According to the variational calculus, a necessary condi-
tion for a minimizer ũ of the joint energy functional (3) is
that the first variation of J̃ [ũ] in any direction (also known as
the Gâteaux derivative) vanishes for all suitable perturbations.
This leads to the Euler-Lagrange equation in the frequency
domain:

f̃(ω) + α Ã(ω) ũ(ω) = 0, (4)

where f̃ is the 3D Fourier transform of the external forces,
FT {∇D[R, T ;u]}, and Ã is a diagonal 3× 3 matrix whose

elements are scalar functions which implement the spatial
derivatives in the frequency domain [13], allowing for their
computation by means of products:

Ãii(ω) = 2

3∑
m=1

(1− cosωm) . (5)

The Euler-Lagrange equations (4) in the frequency do-
main provide a stable implementation for the computation
of a numerical solution for the displacement field, and in
a more efficient way than existing approaches if the three-
dimensional fast Fourier transform is used [13]. To solve (4),
formulated in the frequency domain, a time-marching scheme
can be employed, yielding the following equation:

∂tũ(ω, t) + f̃(ω, t) + α Ã(ω) ũ(ω, t) = 0, (6)

where ∂tũ(ω, t) = (∂tũ1(ω, t), ∂tũ2(ω, t), ∂tũ3(ω, t))
> (in

the steady-state ∂tũ(ω, t) = 0 and (6) holds (4)). Equation
(6) is solved by discretizing the time, t = ξτ , τ > 0 being the
time-step and ξ ∈ N being the iteration index, and the time
derivative of ũ(ω, t) is replaced by the first backward differ-
ence. Using the notation ũ(ξ)(ω) = ũ(ω, ξτ), the following
semi-implicit iterative scheme comes out:

ũ
(ξ)
l (ω) = H(ω)

(
ũ
(ξ−1)
l (ω)− η−1 f̃ (ξ−1)l (ω)

)
, (7)

where l = {1, 2, 3}, η = 1/τ and H(ω) is the following
3D low pass filter H(ω) = (1 + η−1αÃii(ω))−1. An im-
plementation based on the 3D FFT is, in terms of efficiency,
two times faster than the fastest implementation available in
the spatial domain [13], which is the DCT-based algorithm
included in the FLIRT toolbox [16] for the diffusion and cur-
vature registration methods [17].

3. RESULTS

This section shows the non-rigid alignment of different phases
of contrast-enhanced liver 3D CT data acquired at two dif-
ferent times. The studies were obtained using a Toshiba
Aquilion scanner and a Philips Brilliance 64 scanner, and
then reformatted into DICOM files of different resolutions.
For all experiments shown in this work, the registration pa-
rameters are the same: α = 10, η = 1 and ξmax = 50. With
these parameters, the optimal performance of the algorithm
is achieved, obtaining at the same time a likely and smooth
transformation. The diffusion regularizer Sdiff ensures a cor-
rect outcome in this scenario, since it privileges translations
(which can be clearly appreciated in the second and third
experiment) in the computed displacement field u [17].

Fig.1 displays the registration of two scans correspond-
ing to the arterial phase (reference dataset, R) and the por-
tal phase (template dataset, T ) of the same patient. In this
case, the volumes to be registered are initially almost geomet-
rically aligned. This fact can be noticed by visual inspection
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Fig. 1. Experiment 1: registration of the arterial phase and
the portal phase of the same patient (256× 256× 75 voxels).
First column: reference dataset. Second column: registered
template. Third column: template dataset. First row: slice
#28. Second row: slice #46. Third row: slice #56.

of the first and third columns of Fig.1. Indeed, the similarity
measurements (gathered in Table 1) are particularly high for
this experiment: the peak signal-to-noise ratio (PSNR) be-
fore registration is over 40 dB (it should be noted that a PSNR
higher than 27 − 30 dB is usually considered in image regis-
tration literature as a good match), while the correlation ratio
(CR) is over 99% (where a value of 100% means a perfect
match). Nevertheless, as can be seen in the second column of
Fig.1 and also in the first column of Table 1, the proposed reg-
istration procedure can improve the alignment of the datasets
even in this (almost) trivial scenario.

In the second experiment (Fig.2) the aim is to register
two volumetric scans corresponding to the non-contrast phase
(reference dataset,R) and the arterial phase (template dataset,
T ) of the same patient. If we compare the first and third
columns of Fig.2, an overall translational misalignment can
be easily observed. Moreover, there exist slight non-rigid dif-
ferences between the two datasets that have to be also cor-
rected, therefore the proposed regularization term is particu-
larly suitable for this scenario. After the registration process
(shown in the second column of Fig.2), the computed PSNR
and CR measurements are over 30 dB and 99%, respectively.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Experiment 2: registration of the non-contrast phase
and the arterial phase of the same patient (256 × 256 × 79
voxels). First column: reference dataset. Second column:
registered template. Third column: template dataset. First
row: slice #28. Second row: slice #46. Third row: slice #68.

Please note that the initial values of these similarity measures
were very low, hence we can conclude that our approach pro-
vides satisfactory results.

Table 1. Similarity measures computed for the experiments.
Fig.1 Fig.2 Fig.3

PSNR before registration 40.53 dB 15.72 dB 15.59 dB
PSNR after registration 43.31 dB 31.39 dB 27.28 dB
CR before registration 99.52% 37.84% 32.74%

CR after registration 99.77% 99.21% 96.76%

The last experiment, displayed in Fig.3, constitutes the
most difficult registration scenario amongst the three pre-
sented in this paper. Both reference (R, see first column of
Fig.3) and template (T , see third column of Fig.3) datasets
correspond to the arterial phase of the same patient, but they
were acquired with different scanners at two different times
(more precisely, R was acquired three months later than T ).
The outcome of the proposed registration algorithm is shown
in the second column of Fig.3. The measured PSNR and CR
are gathered in Table 1. Although in this case the registration
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Fig. 3. Experiment 3: registration of the arterial phase of the
same patient, acquired at two different times (256× 256× 67
voxels). First column: reference dataset. Second column:
registered template. Third column: template dataset. First
row: slice #25. Second row: slice #34. Third row: slice #42.

result is far from perfect (visually nor numerically), it can
be considered good enough, since the initial datasets differ
significantly (which contributes to the inherent ill-posedness
of the registration problem).

4. CONCLUSIONS

This paper addresses an efficient implementation of varia-
tional image registration of contrast-enhanced liver CT data.
The method is based on an efficient implementation of the
diffusion registration in the frequency domain. Results on
different phases of contrast-enhanced liver CT data show the
ability and high accuracy of the proposed method to estimate
the deformation existing in these 3D acquisitions.

The authors are working on the implementation of this
method in C++ using ITK in order to compare it to other
methods and this way prove its efficiency.
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