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ABSTRACT

In OFDM/OQAM systems, the presence of the intrinsic inter-

ference effect, caused by the lack of complex field orthogo-

nality of the pulses employed, challenges the symbol detec-

tion task at the receiver. In this paper, the problem of equal-

ization in such a system is studied, through the comparative

analysis of three approaches to zero forcing equalization: (a)

the classical receiver, which operates directly on the received

signal at each subcarrier without any additional processing,

(b) the dispersive receiver, forming sufficient statistics for the

symbol decision, and (c) an alternative approach, which aims

at completely eliminating intrinsic interference before decid-

ing the symbols. The receivers are formulated and analyzed

under the common assumptions for the OFDM/OQAM in-

put/output model. The classical receiver is then shown to

perform similarly with the other two for relatively short chan-

nels, while it outperforms them when the channel dispersion

is large with respect to the number of subcarriers. Through

these results, the sensitivity of the detection performance of

alternative receivers to the validity of the input/output model

is revealed and assessed.

Index Terms— Cyclic prefix (CP), offset quadrature am-

plitude modulation (OQAM), orthogononal frequency divi-

sion multiplexing (OFDM), intrinsic interference.

1. INTRODUCTION

An attractive alternative to cyclic prefix-based orthogonal fre-

quency division multiplexing (CP-OFDM) is provided by its

filter bank-based variant employing offset quadrature ampli-

tude modulation (OQAM), known as OFDM/OQAM [10]. In

this scheme, pulse shaping is included via an IFFT/FFT-based
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efficient filter bank, and staggered OQAM symbols, i.e., real

symbols at twice the symbol rate of OFDM, are loaded on the

subcarriers. This allows for the pulses to be well localized in

both the time and the frequency domains. As a consequence,

the system’s robustness to frequency offsets and Doppler ef-

fects is increased and at the same time an enhanced spectral

containment, for bandwidth sensitive applications, is offered

(see, e.g., [1]). Moreover, the use of a CP is not required in the

OFDM/OQAM transmission, which may lead to even higher

transmission rates [10].

However, these advantages come at the cost of the basis

functions in OFDM/OQAM being orthogonal only in the real

field. This leads to an extra noisy component at the output

of the Analysis Filter Bank (AFB) at the receiver, which is

known as intrinsic interference. Because of this effect, and in

the presence of a complex channel frequency response (CFR),

it is impossible to recover the useful signal even in the absence

of background noise and other imperfections. Intrinsic inter-

ference thus turns out to be a degrading factor resulting in an

error floor when it comes to input data detection. Ways that

have been proposed in the literature to overcome this problem

include equalization with interference cancellation (EIC) [6],

at the cost of a significant increase in the receiver’s complex-

ity, and the use of a CP [7], which practically cancels the ad-

vantage of a CP-free operation of the OFDM/OQAM system.

Methods of designing the prototype filter in the filter bank so

as to minimize the interference effect have also been recently

proposed [3, 8].

The goal of this paper is to investigate the problem of re-

ceiver design in the OFDM/OQAM system, with the existing

filter bank designs and without using any CP, when perfect

channel state information (CSI) is assumed to be available

at the receiver. In this context, we consider three reception

schemes: (a) the classical receiver, which operates directly

on the received signal per subcarrier without any other kind

of processing, (b) the dispersive receiver, which relies for its

decisions on the formation of sufficient statistics, and (c) the
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interference-free receiver, which completely eliminates the

intrinsic interference before deciding the symbols. The lat-

ter receiver is based on the idea of filtering the received signal

so as to result in a symmetric overall channel. This allows for

the complete elimination of the intrinsic interference, at the

cost of increasing the delay and coloring the noise at the AFB

input.

All three receivers are formulated and analyzed for the in-

put/output model commonly assumed in the OFDM/OQAM

literature. The analysis is verified through simulations, with

estimated CSI. It turns out that the classical receiver has iden-

tical performance with the other two receivers when the chan-

nel dispersion is small. It outperforms them when the channel

dispersion is large with respect to the number of subcarriers

employed. Through these results, the sensitivity of the de-

tection performance of these alternative reception schemes to

the validity of the common input/output model is revealed and

assessed.

Notation. Vectors are denoted by bold lowercase letters. The

complex conjugate of a complex number (vector) z (z) is de-

noted by z∗ (z∗). Also,  =
√
−1. ‖·‖ is the Euclidean norm.

ℜ{·} stands for the real part of a complex number. Transpo-

sition is denoted by T . R and Z stand for the sets of real and

integer numbers, respectively.

2. SYSTEM MODEL

The baseband discrete-time signal at time instant k at the out-

put of an OFDM/OQAM Synthesis Filter Bank (SFB) is given

by [10]:

s(k) =
M−1∑

m=0

∑

n∈Z

am,ngm,n(k), (1)

where am,n are real (OQAM) symbols, and

gm,n(k) = g

(

k − n
M

2

)

e
 2π

M
m
�

k−
Lg−1

2

�
eϕm,n , (2)

with g being the real symmetric prototype filter impulse re-

sponse (assumed here of unit energy) of length Lg , M being

the even number of subcarriers, and ϕm,n = ϕ0 + π
2 (m +

n) mod π, where ϕ0 can be arbitrarily chosen1 [10]. The fil-

ter g is usually designed to have length Lg = KM , with K
being the overlapping factor. The double subscript (·)m,n de-

notes the (m, n)-th frequency-time (FT) point. Thus, m is the

subcarrier index and n the OFDM/OQAM symbol time index.

The pulse g is designed so that the associated subcarrier

(basis) functions gm,n are orthogonal in the real field only,

that is:

ℜ
{

∑

k

gm,n(k)g∗p,q(k)

}

= δm,pδn,q, (3)

where δi,j is the Kronecker delta. This implies that even in the

absence of channel distortion and noise, and with perfect time

1For example, in [10], ϕm,n is defined as (m + n)π

2
− mnπ.

and frequency synchronization, there will be some intercarrier

(and/or intersymbol) interference at the output of the AFB,

which is purely imaginary, i.e.,

∑

k

gm,n(k)g∗p,q(k) = up,q
m,n, up,q

m,n ∈ R, (4)

and it is known as intrinsic interference [5].

Consider a channel h =
[

h(0) h(1) · · · h(Lh − 1)
]T

,

assumed time invariant for simplicity, and adopt the com-

monly made assumption (e.g., [5]):

g(k−l−nM/2) ≈ g(k−nM/2), l = 0, 1, . . . , Lh−1. (5)

Then the output of the channel can be written as follows [5]:

y(k) ≈
M−1∑

m=0

∑

n∈Z

H(m)am,ngm,n(k) + w(k), (6)

where H(m) is the CFR at the mth subcarrier and w is white

Gaussian noise with zero mean and variance σ2. One can

then express the AFB output at the pth subcarrier and qth

OFDM/OQAM symbol as:

yp,q =
∑

k

y(k)g∗p,q(k)

= H(p)ap,q + 
M−1∑

m=0

∑

n∈Z
︸ ︷︷ ︸

(m,n) 6=(p,q)

H(m)am,nup,q
m,n

︸ ︷︷ ︸

Ip,q

+ηp,q,

(7)

where Ip,q is the associated interference component and ηp,q

is the noise component at the AFB output. It is straightfor-

ward to see that ηp,q is also zero mean with variance σ2.

3. THE CLASSICAL RECEIVER

The classical per subcarrier zero forcing OFDM/OQAM re-

ceiver consists of taking the real part of the ratio yp,q/H(p)
to recover ap,q . Clearly, even in the absence of noise, perfect

symbol recovery is not possible this way when the CFR coef-

ficients are complex. However, at this point we may employ

an approximation commonly made in the OFDM/OQAM lit-

erature, namely that the good localization of the pulse g al-

lows us to neglect interference from outside a FT neighbor-

hood Ωp,q of the (p, q) point. Eq. (7) is then approximated

by

yp,q ≈ H(p)ap,q + 
M−1∑

m=0

∑

n∈Z
︸ ︷︷ ︸

(m,n)∈Ωp,q

H(m)am,nup,q
m,n + ηp,q. (8)

An additional commonly made assumption is that of the chan-

nel constancy in Ωp,q [5]. According to this, the channel
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spread is sufficiently small that all the CFR coefficients in

Ωp,q can be well approximated by H(p). Then (8) becomes:

yp,q ≈ H(p)










ap,q + 
M−1∑

m=0

∑

n∈Z
︸ ︷︷ ︸

(m,n)∈Ωp,q

am,nup,q
m,n










+ ηp,q. (9)

The classical receiver then decides the transmitted symbols as

follows:

âp,q = dec

[

ℜ
{

yp,q

H(p)

}]

≈ dec

[

ap,q + ℜ
{

ηp,q

H(p)

}]

,

(10)

where dec[·] denotes the nearest neighbor rule for the OQAM

constellation employed. Ωp,q is commonly taken to be the

first-order neighborhood of (p, q), namely {(p± 1, q), (p, q±
1), (p ± 1, q ± 1)}.

Remarks.

1. The classical receiver coincides with the so-called mul-

tiplicative receiver in [9].

2. To obtain (9) and (10), FT neighborhood and channel

constancy approximations have been used.

4. THE DISPERSIVE RECEIVER

The dispersive receiver, studied in [9], relies on the use of

a channel-matched AFB to form sufficient statistics for the

decision of the transmitted symbols. The analysis filters are

modified as g̃m,n = h ⋆ gm,n, with ⋆ denoting convolution.

With this notation, the channel output can be expressed as

y(k) =
M−1∑

m=0

∑

n∈Z

am,ng̃m,n(k) + w(k). (11)

The statistic corresponding to the (p, q)th FT point, yp,q =
∑

k y(k)g̃∗p,q(k), is formed as

yp,q =

M−1∑

m=0

∑

n∈Z

am,n

∑

k

g̃m,n(k)g̃∗p,q(k) + η̃p,q, (12)

where η̃p,q =
∑

k w(k)g̃∗p,q(k). Under assumption (5), g̃m,n

can be approximated as g̃m,n(k) ≈ H(m)gm,n(k). The de-

cision rule is then analogous to (10) but with H(p) being

replaced by the pth CFR coefficient of the overall channel,

namely |H(p)|2:

âp,q = dec

[

ℜ
{

yp,q

|H(p)|2
}]

. (13)

The dispersive receiver exhibits a behavior almost equivalent

to the classical receiver for low channel dispersions. This

has already been observed in [9]. Indeed, using the above

approximations, which hold for such channels,

∑

k

g̃m,n(k)g̃∗p,q(k) ≈ H(m)H∗(p)
∑

k

gm,n(k)g∗p,q(k).

For (m,n) = (p, q), the last expression equals |H(p)|2, while

for (m,n) 6= (p, q) it becomes H(m)H∗(p)up,q
m,n. Similarly,

η̃p,q ≈
∑

k

w(k)H∗(p)g∗p,q(k) = H∗(p)ηp,q. (14)

Combining the above results and using again the channel con-

stancy assumption in Ωp,q , we can write

yp,q ≈ |H(p)|2










ap,q + 
M−1∑

m=0

∑

n∈Z
︸ ︷︷ ︸

(m,n)∈Ωp,q

am,nup,q
m,n










+H∗(p)ηp,q.

(15)

The decision statistic is then formed as

ℜ
{

yp,q

|H(p)|2
}

≈ ap,q + ℜ
{

ηp,q

H(p)

}

(16)

and coincides with that of the classical receiver (cf. (10)).

Remarks.

1. Notice that, as with the classical receiver, FT neighbor-

hood and channel constancy approximations have been

used in the derivation of yp,q in (15). The equivalence

of the classical and dispersive receivers therefore holds

only approximately, when these approximations can be

considered accurate enough.

2. The reader can verify that (5) should hold for l =
0, 1, . . . , 2Lh − 2 in this case, which is the time spread

of the composite channel h ⋆ h̃, h̃ being the channel-

matched filter. It is thus expected that the dispersive

receiver, as formulated above, will be less well per-

forming for channels of a relatively high time disper-

sion. This will be verified in the simulation examples.

3. Due to the presence of the CIR in the AFB func-

tions g̃m,n and to ensure causality in forming yp,q , one

should replace g̃∗p,q(k) with e−
2π(Lh−1)p

M g̃∗p,q(k). This

then also implies the following change in (13):

âp,q = dec

[

ℜ
{

yp,q

e−
2π(Lh−1)p

M |H(p)|2

}]

. (17)

Along with the corresponding change in (14), namely

η̃p,q ≈ e−
2π(Lh−1)p

M H∗(p)ηp,q , this can be readily ver-

ified to be again equivalent to (10) under the same ap-

proximations as above.
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5. THE INTERFERENCE-FREE RECEIVER (IFR)

Carefully observing (7), one can see that, in the absence of

noise, perfect symbol recovery would be possible if the CFR

values were either real or imaginary numbers. A possible way

to force this property is presented next and relies on symmet-

rifying the CIR in a Hermitian fashion. This gives rise to

what we call here interference-free receiver (IFR). This re-

ception approach completely annihilates the intrinsic interfer-

ence without resorting to the FT neighborhood approximation

made in the other two receivers above. The IFR is an analyt-

ical answer to the question of the existence of a receiver that

can avoid the intrinsic interference altogether without resort-

ing to a CP, when perfect CSI is available.

To obtain a real-valued CFR, the IFR processes the incom-

ing signal with a filter f =
[

f(0) f(1) · · · f(Lf − 1)
]T

to transform the CIR to a composite one that is conjugate

symmetric, namely

hc =
[

κT ξ (JLκ
κ∗)T

]T
(18)

with κ being an Lκ × 1 complex vector, Jd the d × d unit

antidiagonal matrix and ξ ∈ R. The length of hc is Lhc =
2Lκ + 1. The associated M -point CFR coefficient will then

be given by

Hc(m) = K(m) + e− 2π
M

m2LκK∗(m) + ξe− 2π
M

mLκ , (19)

where K(m) are the M -point discrete Fourier transform

(DFT) coefficients of κ. It is convenient to have the mod-

ulator employ the following modified functions gTx
m,n(l) =

e 2π
M

mLκgm,n(l) instead of the usual gm,n, where it should

be noted that e 2π
M

mLκ is a constant in time. The demodu-

lator is as before. Subject to (5), which must now hold for

l = 0, 1, . . . , Lhc − 1, the output of the composite channel

can then be written as

yc(k) =

M−1∑

m=0

∑

n∈Z

am,ngTx
m,n(k)Hc(m) + w̄(k), (20)

where w̄ = w ⋆ f . Substituting (19) into (20) leads to

yc(k) =

M−1∑

m=0

∑

n∈Z

2KR(m)am,ngm,n(k) + w̄(k), (21)

where

KR(m) = ℜ
{

e 2π
M

mLκK(m)
}

+ ξ/2 (22)

is real-valued. Then, the AFB output yp,q =
∑

k yc(k)g∗p,q(k)
becomes:

yp,q = 2KR(p)ap,q + 
M−1∑

m=0

∑

n∈Z
︸ ︷︷ ︸

(m,n) 6=(p,q)

2KR(m)am,nup,q
m,n + η̄p,q,

(23)

where η̄p,q =
∑

k w̄(k)g∗p,q(k). The input symbols can then

be decided as follows:

âp,q = dec

[

ℜ
{

yp,q

2KR(p)

}]

= dec

[

ap,q + ℜ
{

η̄p,q

2KR(p)

}]

.

(24)

Remarks.

1. An immediate (yet not the only one) choice of the filter

f is JLh
h∗ with Lf = Lh, i.e., a filter matched to the

complex baseband channel. It is then clear that ξ =
‖h‖2, Lκ = Lh − 1, and Lhc = 2Lh − 1.

2. It can be easily shown that, with this choice of f ,

2KR(p) = |H(p)|2. Moreover, as in Remark 3

for the dispersive receiver, one can write η̄p,q ≈
e−

2π(Lh−1)p

M H∗(p)ηp,q. Substituting into the last deci-

sion rule results in

âp,q = dec

[

ap,q + ℜ
{

e−
2π(Lh−1)p

M
ηp,q

H(p)

}]

,

which is seen to be similar to that of the classical and

the dispersive receivers, as derived above under the

FT neighborhood and channel constancy assumptions

(cf. eqs. (10), (16)). Note, however, that in the above

analysis of the IFR neither of these approximations

have been used.

3. As it is the case with the dispersive receiver, it is harder

to satisfy (5) for relatively long channels here. Thus,

for the example IFR above, (5) should hold for l =
0, 1, . . . , 2Lh − 2.

6. SIMULATIONS

In this section, we present simulation results to compare the

performances of the above receivers. In the IFR, f was cho-

sen as the filter matched to the CIR. Time invariant Rayleigh

channels with an exponential profile were assumed. Data

frames consisting of 53 complex OFDM symbols following

QPSK modulation were transmitted. Filter banks of the type

proposed in [2] have been employed, with M = 64,K = 4.

All receivers rely on preamble-based estimates of the CFR

computed with the optimal sparse preambles derived in [4], at

an SNR of 5 dB.

In Figs. 1(a) and (b), the (uncoded) bit error rate (BER) is

plotted versus the transmit bit signal to noise ratio (Eb/N0)

for channels that are respectively short (Lh = 4) and long

(Lh = 12) relatively to the OFDM/OQAM symbol duration.

Note that the noise coloring due to channel matched filtering

in the dispersive and interference-free receivers has not been

compensated in any way in these experiments.

As expected from the analysis above, all three receivers

perform similarly in Fig. 1(a), where the channel is short
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Fig. 1. Detection performance of the three receivers for ex-

ponential channels of lengths (a) Lh = 4 and (b) Lh = 12.

SNR during training is 5 dB. Filter banks with M = 64 and

K = 4 have been used.

enough for all receivers to meet the approximating assump-

tions. This is not the case in Fig. 1(b) however, where (5) fails

to hold, particularly for the dispersive and interference-free

receivers due to the significant dispersion of the composite

channel. The performance difference is mostly seen at the

medium to high SNR regimes, where the interference due to

the assumptions inaccuracy prevails over noise. The error

floor at higher SNRs, well known in OFDM/OQAM sys-

tems [5], also appears in these examples and its severity is

again seen to increase with longer composite channels.

7. CONCLUSIONS

In this paper, the problem of equalization in OFDM/OQAM

systems was investigated, in the presence of the intrinsic inter-

ference effect. Three receivers of the zero forcing type were

analyzed, namely the classical receiver operating directly on

the AFB outputs, the dispersive receiver which forms suffi-

cient statistics based on channel-dependent analysis filters,

and the interference-free receiver, which can completely anni-

hilate the intrinsic interference through a symmetrification of

the channel. All three receivers were formulated and analyzed

under commonly made approximating assumptions that are

only valid for channels that are relatively short with respect

to the length of the prototype filter. The classical receiver

was shown to perform similarly with the other two for such

channels. With a significant channel dispersion, the model as-

sumptions fail to hold for the (theoretically superior) disper-

sive and IFR receivers, leading to a performance deterioration

with respect to the classical one.
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