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ABSTRACT

This paper presents a binary classification algorithm that is

based on the minimization of the energy of slack variables,

called the Mean Squared Slack (MSS). A novel kernel ex-

tension is proposed which includes the withholding of just

a subset of input patterns that are misclassified during train-

ing. The later leads to a time and memory efficient system

that converges in a few iterations. Two datasets are exploited

for performance evaluation, namely the adult and the verte-

bral column dataset. Experimental results demonstrate the

effectiveness of the proposed algorithm with respect to com-

putation time and scalability. Accuracy is also high. In spe-

cific, it equals 84.951% for the adult dataset and 91.935%,

for the vertebral column dataset, outperforming state-of-the-

art methods.

Index Terms— Slack minimization, kernel methods, bi-

nary classification, support vector machines, iterative solving

1. INTRODUCTION

Machine learning is an ever evolving research area. Support

vector machines (SVMs) are mathematically well-founded

machine learning methods that are widely applied to many

real-word domains. They are maximum margin classifiers

that try to find the hyperplane which optimally separates the

data into two categories. The term margin refers to the min-

imum distance from the separating hyperplane to the closest

training feature vector. The key feature vectors are those

at the margin and they are called support vectors. Support

vectors rely only on a few data points to define the classi-

fier’s hyperplane. Accordingly, SVMs present the ability to

generalize well even with a limited number of training data.

Linear SVM can be extended to nonlinear ones when the

feature space is transformed into a higher feature space using

a set of nonlinear basis functions. Hopefully, in the higher
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dimension feature space the input feature vectors may be sep-

arated linearly. An advantage of the SVM is that it is not nec-

essary to explicitly implement this transformation and to de-

termine the separating hyperplane. Instead a kernel represen-

tation can be used, where the solution is written as a weighted

sum of the values of certain kernel function evaluated at the

support vectors. In this paper we present an SVM alternative

which instead of minimizing the norm of the weight vector

and putting a penalty on the slack variables like SVMs, it min-

imizes the energy of the slack variables. For the kernel case,

we propose a method that retains just a limited subset of train-

ing feature vectors for kernel computation. Accordingly, the

proposed algorithm is efficient with respect to computational

time and memory demands.

With respect to applications, SVMs are exploited at com-

puter vision, bio-informatics and natural language process-

ing. This may partially due to that both fields deal with high-

dimensional problems, such as microarray processing tasks,

and text categorization. Additionally, SVMs have been tested

for speech and speaker recognition, emotion classification, e-

learning, database marketing, intrusion detection, geo- and

environmental sciences, finance time series forecasting, and

high energy physics. The aforementioned list of applications

is just indicative but not exhaustive.

Recent methods exploit the idea of constructing kernel al-

gorithms, where the starting point is not a linear algorithm [1],

but a linear criterion. The latter can be turned into a condition

involving an efficient optimization over a large function class

using kernels, thus yielding tests for independence of ran-

dom variables, or tests for solving the two-sample problem.

A linear criterion may be for example that two random vari-

ables have zero covariance, or that the means of two samples

are identical. Other alternatives try to improve scalability,

exploiting parallel SVM (PSVM) [2], which reduces mem-

ory use through performing a row-based, approximate ma-

trix factorization, and which loads only essential data to each

machine to perform parallel computation. Additional recent

theory advancements include generalization bounds based on

Rademacher complexity theory for model selection and error

estimation. Moreover, a dimension-independent bound of the

generalization error may be computed based on probably ap-

proximately correct (PAC) Bayesian theory.
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The rest of the paper is organized as follows: In Section 2

the proposed method is analysed, in Section 3 experimental

results are presented on two datasets of radically different na-

ture. Finally, conclusions are drawn is Section 4.

2. MEAN SQUARED SLACK MINIMIZATION

2.1. Problem formulation

Let us consider the classification task for a set of training data

X = {(x(i), t(i)) | x(i) ∈ R
n}Ni=i (1)

where x(i) is the ith feature vector of size n, t(i) ∈ {−1, 1}
is the class label of x(i), and N is the size of X . The classi-

fication task aims to find a proper weight vector w ∈ R
n and

bias b that solve the following set of inequalities:

t(i)(wTx(i) + b) ≥ 1, i = 1, · · · , N. (2)

However, there may not exist any feasible solution for in-

equality (2). A treatment to overcome this obstacle has been

proposed at [3]. It is useful to define a slack variable ξ(i),
associated with pattern i, so that it holds

t(i)[wTx(i) + b] ≥ 1− ξ(i), (3)

ξ(i) = max{1− t(i)[wTx(i)− b], 0}.(4)

where ξ(i) ≥ 0.

2.2. The linear case

Typically a maximum margin classifier, such as an SVM,

seeks to minimize the norm of the weight vector w under the

constraints described in (2) and putting a penalty on the slack

variables. An alternative approach would be to minimize the

Mean Squared Slack (MSS), as explored in our previous

work [4]. Let us define

JMSS =
1

2
Ē
{

(1− t[wTx− b])2
∣

∣

∣
1 > t[wTx+ b]

}

(5)

where Ē{X | Y } is the empirical average of the sequence

X(i) under condition Y :

Ē{X | Y } =
1

NY

∑

all i where
Y is true

X(i) (6)

and NY is the number of instances where Y is true. Note

that we care only for those patterns which give t(i)(wTx +
b) < 1. This is reasonable, since, in the classification context,

only the “bad” patterns that fail to satisfy inequality (2) should

contribute to the cost, while all the others should not.

Motivated by our quest for a faster algorithm we explore

here methods minimizing the MSS. The following statements

are true [4]:

Algorithm 1 Slackmin algorithm (linear case)

Input: MAX ITERATIONS
{INITIALIZATION}
Initialize w, b to random values

{TRAINING}
for MAX ITERATIONS iterations do

y = wTx+ b
S = {i : 1 > t(i)[wT

k x(i) + b]};

{UPDATE RULES}
xS= {x : S is true}
tS= {t : S is true}
lS → length of S

Rx = [xS 1][xS 1]T

lS

mx =
[xS 1]tT

S

lS

res = R+
xmx

w = res(1 : n)
b = res(n+ 1)
{TERMINATING CONDITION}
if (misclassified=0 or lS=0 or norm(w) ≥ threshold)) then

break

end if

end for

{TESTING}
y = wTx+ b
return y

• if problem (2) is linearly separable, then the minimum

JMSS = 0 is attained by [wT , b] iff [wT , b] is a sepa-

rating vector;

• if the problem is not linearly separable, then the cost

function JMSS attains its minimum for some [wT , b]
with 0 < ‖[wT , b]‖ < ∞.

One way to achieve our goal the optimization of JMSS

through the Karush-Kuhn-Tucker (KKT) conditions. The full

theoretical analysis can be found in [4]. In short, we compute

the gradient of JMSS w.r.t. w, and b

gw = Rxw + bmx −mtx (7)

gb = mT
xw + b−mt (8)

where Rx = Ē{xxT | 1 > t[wTx+ b]}, mtx = Ē{tx | 1 >
t[wTx+b]}, mx = Ē{x | 1 > t[wTx+b]}, mt = Ē{t | 1 >
t[wTx+ b]}. Setting the gradient equal to zero we obtain

[

w∗

b∗

]

=

[

Rx mx

mT
x 1

]+ [

mtx

mt,

]

(9)

where + stands for pseudo-inverse matrix.

The linear slackmin algorithm is Algorithm 1. It is stated

that n is the number of features.
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2.3. The kernel trick

In order to facilitate the computation of nonlinear separating

surfaces we can use a nonlinear mapping Φ : R
n → R

m

of the input vectors x into an m-dimensional space, where

m > n (sometimes m = ∞). Let us define

S = {i : t(i)y(i) < 1}, (10)

The novelty of the kernel extension is that we may retain a

subset G of S, i.e. we may select just |G| training feature

vectors among those that fail to satisfy inequality (2). In other

words, our aim is to fix an upper limit to the cardinality |G|
and form G ⊂ S by picking at most |G| elements out of S.

This is a well justified selection since the classifier utilizes

only the support vectors, that is a limited number of the initial

N training vectors. The latter is in accordance with the SVM

theory. Actually |G| may be much smaller than |S|. The ad-

vantages of the aforementioned choice are two-fold

• Less computational time is needed since the size of the

linear system to be solved in each iteration is limited.

• Less memory is needed which is especially important

for real datasets which tend to be large-scale ones.

There is an amplitude of ways that G may be formed.

For this paper, we choose to propose a “first come-first kept”

method, i.e. we retain the first Za training feature vectors

that belong to S. In other words, the cardinality of G is Za.

Here, Za initially equals n and it may reach a maximum value

Za max through a scale up factor Za scale.

In this case, it is true that the separating vector w in R
m

is a linear combination of the mapped inputs

w =
∑

j∈G

a(j)Φ(x(j)). (11)

Notice that the summation is done over G instead of S. We

shall avoid the explicit computation of Φ() using the scalar

kernel function K(x,y) = Φ(x)TΦ(y). Therefore, the out-

put is defined as

y(i) =
∑

j∈G

K(x(i),x(j))a(j) + b, (12)

Then based on [4], by setting b = 0, Eq. (9) in conjunc-

tion with Eq. (11) becomes

a = K+tG, (13)

where

a = [a(i)]i∈G ∈ R
|G|×1, (14)

K = [Kij ]i∈G,j∈G = [ki]
T
j∈G ∈ R

|G|×|G|, (15)

tG = [t(i)]i∈G ∈ R
|G|×1. (16)

The proposed slackmin algorithm for the kernel case is

summarized in Algorithm 2.

Algorithm 2 Slackmin algorithm (kernel case)

Input: MAX ITERATIONS, Za max, Za scale
{INITIALIZATION}
Initialize a = 0, b=0, and Za=n
{TRAINING}
for MAX ITERATIONS iterations do

G = [ ]
for p=1 TO N do

kT = [Kpi], i = 1, · · · , N
y(p) = kTa+ b
S = {p : 1 > t(p)y(p)};

if S is true then

lS → length of S
if lS ≤ Za then

G = [G p]
else

increaseZaflag = true

end if

end if

end for

Compute K = [Kij ]i∈G,j∈G

if increaseNZaflag = true then

Za = min((Za scale× Za), Za max)
end if

{UPDATE RULES}
a = K+tG
{TERMINATING CONDITION}
if (misclassified=0 or lS=0 or norm(a) ≥ threshold) then

break

end if

end for

{TESTING}
K′ = [Kij ]i∈N,j∈N

y = K′a+ b
return y

3. EXPERIMENTAL EVALUATION

3.1. Databases

In our experiments we used the adult data set [5] available at

the UCI machine learning repository. It is among the larger

datasets, including 48842 samples (unknown values are not

removed). The task is to predict if the income of a person is

greater than 50K based on 14 census parameters, such as age,

education, marital status, sex, occupation, work class, and so

forth.

An additional dataset, related to classification of patholo-

gies of the vertebral column is considered [5]. The dataset

contains values for six biomedical features derived from the

shape and orientation of the pelvis and lumbar spine. The

aforementioned biomedical features are utilized to classify

orthopaedic patients into 2 classes normal (100 patients) or

abnormal (210 patients). The dataset is one of the most recent
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Table 1. Experimental results for slackmin algorithm (linear kernel)

Dataset
Itera Train Set Test set

tions time

elapsed

(s)

confusion matrix accuracy PRC RCL F1 time

elapsed

(s)

confusion matrix accuracy PRC RCL F1

vertebral 10 0.136 62 21 84.677% 74.699% 78.481% 76.543% 0.001 20 5 90.323% 80.000% 95.238% 86.957%

column 17 148 1 36

adult 10 0.391 4875 1701 84.094% 74.133% 51.922% 61.071% 0.006 1189 430 84.244% 73.440% 51.741% 60.710%

4514 27984 1109 7040
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Fig. 1. Elapsed time (s) per iteration with respect to

accuracy(%), for the training phase of slackmin linear al-

gorithm (vertebral column dataset).

additions to UCI machine learning repository.

3.2. Experimental Results

During performance evaluation 80% of the samples of each

dataset are retained for training and the remaining 20% for

testing. Two scenarios are exploited to assess the efficiency

of the proposed approach: the linear case and the polynomial

kernel. For the second case, power and offset are user-defined

parameters.

Classifier performance is evaluated through several sets of

figures of merit to facilitate future comparisons. Let us define

as tp as true positive, fn as false negative, fp as false posi-

tive, and tn as true negative. Then, is is true that accuracy =
100 × (tp + tn)/(tp + tn + fp + fn), PRC = 100 ×
tp/(tp+ fp), RCL = 100 × tp/(tp+ fn), and F1 = (2 ×
PRC × RCL)/(PRC + RCL). Detailed results are avail-

able in Table 1 and Table 2 for the linear case and the polyno-

mial kernel, respectively. It is stated that the columns of the

confusion matrix correspond to the actual label and the rows

to the predicted one. All experiments were performed on a

2.67 MHz processor with 4GB of RAM, with a Windows-7

32 bit operating system. The software platform exploited is

MATLABrR2010a.

3.3. Discussion

As it is obvious from Table 1 and Table 2, the algorithm ex-

hibits advantages with respect to computation time, scalabil-

ity, and efficiency. With respect to computation time, exper-

iments were performed on a 2.67 MHz processor with 4GB

of RAM, with a Windows-7 32 bit operating system. Focus-

ing on the linear case, the time for training and testing the

classifier demonstrates a magnitude of fractions of seconds.

To provide some insight to related literature, according to [6]

the execution time for a linear SVM equals 5 s for the adult

dataset. It is also true that the proposed algorithm converges

quickly, as it is depicted in Figure 1 and in Figure 2 for the

linear case of the vertebral column and the adult dataset re-

spectively. Referring to scalability, the adult dataset is con-

sidered to be a large-scale dataset, containing a total of 48842

samples, whereas the vertebral column dataset consists of 310

samples, proving the proposed algorithm’s ability to handle

effectively a limited number of training data.
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a
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c
u
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c
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%
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Fig. 2. Elapsed time (s) per iteration with respect to

accuracy(%), for the training phase of slackmin linear al-

gorithm (adult dataset).

With respect to efficiency, the proposed algorithm out-

performs state-of-art methods. Here, we focus on two most

recent papers utilizing the same datasets. In specific, in [7]

a novel SVM formulation, namely ν-SP-SVM, is proposed.

This method includes constrains that drop the weights associ-
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Table 2. Experimental results for slackmin algorithm (polynomial kernel)

Dataset
Train Set Test set

O
ff

se
t

P
o
w

er

It
er

at
io

n
s

Z
a
sc
a
le

Z
a
m
a
x

time

elapsed

(s)

confusion matrix accuracy PRC RCL F1 time

elapsed

(s)

confusion matrix accuracy PRC RCL F1

vertebral 2 2 20 1.5 2000 1.296 62 17 86.290% 78.481% 78.481% 78.481% 0.002 19 3 91.935% 86.364% 90.476% 88.372%

column 17 152 2 38

adult 2 2 15 2.6 2500 1568.249 5374 2020 84.565% 72.681% 57.262% 64.057% 6.973 1312 480 84.951% 73.214% 56.994% 64.094%

4011 27669 990 6986

ated to irrelevant features. In specific, a fraction ν of the fea-

tures is retained. The paper presents SVM with 1-norm and

2-norm regularization parameter. The adult dataset has been

used for experimentation. During training, 10% of the train-

ing dataset is randomly selected. SVMs have been trained

100 times, with different randomly selected training data and

their averaged results are reported. In specific, the method

accomplishes an accuracy less than 84% both for the 1-norm

ν-SP-SVM and the 2-norm ν-SP-SVM. For the described ex-

perimental protocol, the standard 2-norm SVM presents an

averaged accuracy of 83.67(±0.3)% and the standard 1-norm

SVM achieves an averaged accuracy of 84.03(±0.2)%.

Ensemble classifiers’ performance is studied in [8]. Fuzzy

Adaptive Resonance Theory (ART) and Self Organizing Map

(SOM) networks are applied as base classifiers to produce

ARTIE (ART networks in Ensembles) and MUSCLE (Multi-

ple SOM Classifiers in Ensembles) models, respectively. A

technique based on particle swarm optimization and simu-

lated annealing is proposed for tuning the base classifier’s

parameters. Both ensemble classifiers are comprised of 10

base classifiers, whereas decisions are made using the major-

ity voting rule. Additionally, a standard ensemble of SVM

classifiers is tested, comprising 10 base classifiers that uti-

lize the SMO algorithm along with an RBF kernel. Exper-

imentation is carried out on vertebral column dataset. For

ARTIE model the best accuracy is 83.87(±5.89)%, for MUS-

CLE model 85.81(±9.40)%, and for the standard SVM en-

semble 86.55% (no standard deviation is provided).

4. CONCLUSIONS

This paper presents the slackmin algorithm. For the kernel

case, time and memory efficiency is optimized by selecting a

limited subset of those feature vectors that are misclassified

during training. Here, we applied a “first come-first kept”s

strategy, i.e. the subset consists of those feature vectors that

are first detected to be misclassified.

The algorithm is computationally efficient and fast, since

it manages to converge in a few iterations. With respect to

efficiency, slackmin algorithm demonstrates improved figures

of merit when compared to recent state-of-the-art approaches.

The best accuracy for the adult dataset equals 84.951% and

for the vertebral column dataset accuracy is 91.935%.

In the future, the proposed system can be exploited as a

base classifier of an ensemble system. Additionally, more

datasets may be tested, so as to study the performance of the

proposed algorithm for diverse classification problems.
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[7] V. Gómez-Verdejo, M. Martı́nez-Ramón, J. Arenas-

Garcı́a, M. Lázaro-Gredilla, and H. Molina-Bulla, “Sup-

port vector machines with constraints for sparsity in the

primal parameters,” IEEE Trans. Neural Networks, vol.

22, no. 8, pp. 1269 –1283, August 2011.

[8] C. L. C. Mattos and G. A. Barreto, “ARTIE and MUS-

CLE models: Building ensemble classifiers from fuzzy

ART and SOM networks,” Neural Computing and Ap-

plications, pp. 1–13, 2011, Online first.

648


