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ABSTRACT

A speech enhancement algorithm in a noisy and reverberant
enclosure for a wireless acoustic sensor network (WASN) is
derived. The proposed algorithm is structured as a two stage
beamformers (BFs) scheme, where the outputs of the first
stage are transmitted in the network. Designing the second
stage BF requires estimating the desired signal components
at the transmitted signals. The contribution here is twofold.
First, in spatially static scenarios, the first stage BFs are de-
signed to maintain a fixed response towards the desired sig-
nal. As opposed to competing algorithms, where the response
changes and repeated estimation thereof is required. Second,
the proposed algorithm is implemented in a generalized side-
lobe canceler (GSC) form, separating the treatment of the de-
sired speech and the interferences and enabling a simple time-
recursive implementation of the algorithm. A comprehensive
experimental study demonstrates the equivalent performance
of the centralized GSC and of the proposed algorithm for both
narrowband and speech signals.

1. INTRODUCTION

Distributed signal processing algorithms for WASNs have
recently gained increased attention, raising research ques-
tions regarding power constraints, computational burden in
the nodes, and maintenance of wireless links. A survey on
the subject matter by Bertand is given in [1]. In this work, we
consider the problem of speech enhancement in reverberant
enclosures in WASNs.

Two criteria are commonly used for designing BFs [2] in
this context: the minimum mean square error (MMSE), which
minimizes the variance of the error at the output, and the
minimum variance distortionless response (MVDR) which
minimizes the noise power at the output while maintaining
undistorted desired signal at the output. Doclo et al. [3] pro-
posed the speech distortion weighted (SDW)-multi-channel
Wiener filter (MWF) BF which generalizes both BFs. Doclo
et al. [4] proposed a distributed algorithm for binaural hear-
ing aid comprising multiple microphones where the left and
right apparatuses are connected with a bidirectional wireless

audio link. Bertrand and Moonen [5] generalized the problem
and proposed the distributed adaptive node-specific signal es-
timation (DANSE)-k, which considers N nodes and k desired
speakers. Their algorithm requires N × k audio channels.

In the current contribution, the MVDR criterion is con-
sidered. The MVDR is a special case of the linearly con-
strained minimum variance (LCMV), which is capable of
constraining the response of multiple speakers. Gannot et
al. [6] proposed a frequency domain MVDR criterion imple-
mented in a GSC structure (A seminal work by Griffiths and
Jim, 1982), namely a transfer function generalized sidelobe
canceler (TF-GSC). Markovich-Golan et al. [7] proposed a
distributed MVDR algorithm for the binaural case. Bertrand
et al. [8] addressed the more general problem and introduced
the linearly constrained (LC)-DANSE which minimizes the
noise power at the output while maintaining P linear con-
straints. Their algorithm requires transmission of N × P au-
dio channels.

Here, only the case of a single desired speaker is ad-
dressed. The efficient GSC-form implementation of the
MVDR, rather than its closed-form, is considered. The GSC-
form relaxes the requirement of the LC-DANSE algorithm
to re-estimate the speech and noise spectra at each itera-
tion. Both iterative and time recursive procedures are derived
in this paper. The proposed algorithm, denoted distributed
single-constraint generalized sidelobe canceler (DS-GSC), is
based on a two-stage GSC. In the first stage, N local GSC-
BFs are applied only to the local microphones at each node,
yielding N signals which are broadcasted in the WASN. The
second stage, comprises a global GSC BF which processes the
N output signals of the first stage. A replica of the global fil-
tering stage is applied simultaneously and independently in all
the nodes of the WASN. The main advantages of the proposed
scheme are its ability to adapt in speech-absent segments, and
that it relaxes the requirement of closed-form MVDR algo-
rithms to estimate the speech spectrum repeatedly in static
environments. It is experimentally shown that the proposed
algorithm is equivalent to the centralized TF-GSC. A compre-
hensive theoretical convergence proof and a robustness anal-
ysis is beyond the scope of this paper.
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The structure of the paper is as follows. The problem is
formulated in Sec. 2. In Sec. 3, the TF-GSC BF is presented.
In Sec. 4, we introduce the proposed GSC-based distributed
algorithm, namely the DS-GSC. A comprehensive experi-
mental study is given in Sec. 5. Some concluding remarks
are given in Sec. 6.

2. PROBLEM FORMULATION

Consider an N -node WASN. Denote by Mn the number of
microphones in the nth node, and by M =

∑N
n=1 Mn the to-

tal number of microphones. The problem is formulated in
the short time Fourier transform (STFT) domain, where k
denotes the frequency index and ℓ denotes the segment in-
dex. Let z(ℓ, k) be a vector constructed by all received mi-
crophone signals z(ℓ, k) =

[
zT1 (ℓ, k) · · · zTN (ℓ, k)

]T
where zn(ℓ, k) is the local Mn × 1 received signals vector of
the nth node and (·)T is the transpose operator. The term local
(to the nth node) is associated with the signals and parameters
calculated using only the microphones at the nth node. By the
term global we designate signals and parameters which are
calculated using data from other nodes shared via the wire-
less link. The global vector of received signals is formulated
as:

z(ℓ, k) =h(ℓ, k)s(ℓ, k) + v(ℓ, k) (1)

where s(ℓ, k) is the desired speech source, and h(ℓ, k) con-
sists of a vector of M × 1 acoustic transfer function (ATF)
from the desired speaker to the microphones. The vector
v(ℓ, k) is a vector of interferences picked up by microphones.
Assuming that the speaker and the noise are statistically inde-
pendent, the covariance matrix of the received signals is:

Φzz(ℓ, k) = λs(ℓ, k)h(ℓ, k)h
†(ℓ, k) +Φvv(ℓ, k) (2)

where λs(ℓ, k) is the variance of the desired speech signal,
Φvv(ℓ, k) is the covariance matrix of the interferences and
(·)† is the Hermitian operator. We assume that the network is
fully connected, i.e., each transmitted signal is available to all
nodes. In networks that are not fully connected a variation of
the proposed algorithm can be derived, however, it is beyond
the scope of this contribution. We assume that the location
of the speaker is static and that the noise sources’ statistics
is slowly time-varying. Therefore, the speaker ATF and the
noise covariance matrix are assumed time-invariant. Hence,
in these quantities the frame index is omitted. For brevity,
explicit frequency dependence is omitted hereafter. Finally,
denote by Un an M ×Mn matrix that extracts the local mi-
crophones zn(ℓ) = U†

nz(ℓ) from z(ℓ):

Un =
[
0Mn×(

∑n−1

n′=1
Mn′) IMn 0Mn×(

∑N
n′=n+1

Mn′)

]†
(3)

where Im is an m×m identity matrix.

The problem at hand is to enhance the desired speech sig-
nal at each node, with access only to the local microphones
and the transmitted signals.

3. THE CENTRALIZED TF-GSC BF

Let w be the centralized TF-GSC BF. Recall that w is the
output power w†Φvvw minimizer, that satisfies the constraint
h†w = 1. In many applications, when the goal is to re-
duce the noise level, while sacrificing dereverberation, it is
sufficient to enhance the desired signal as received by a refer-
ence microphone (arbitrarily chosen here to be the first mi-
crophone). The relative transfer function (RTF) [6], h̃, is
defined as the vector of ATFs from the desired signal to the
microphones normalized by the ATF to the reference micro-
phone, h̃ = h/h1. The resulting modified constraint satisfies

h̃
†
w = 1 (see [6]).
Now, we are ready to formulate the centralized GSC:

w̃ = q̃− B̃f̃ (4)

where q̃ denotes the fixed beamformer (FBF) and is parallel to
the RTF, B̃ denotes the blocking matrix (BM) and f̃ denotes
the noise canceller (NC). The FBF [2] is given by:

q̃ =
h̃

∥h̃∥2
. (5)

The matrix B̃ is designed to block the RTF of the speaker,
i.e., B̃

†
h̃ = 0(M−1)×1, but it is not unique. One way of

constructing the BM is by calculating the singular value de-
composition (SVD) of h̃:

h̃ = Θ̃Γ̃Ψ̃
†

(6)

and selecting the M − 1 left singular vectors (of Θ̃) which
correspond to the zero singular values [2]. The NC is given in
a closed-form by:

f̃ =
(
B̃

†
ΦvvB̃

)−1

B̃Φvvq̃. (7)

An efficient time-recursive implementation for adapting the
NC during speech-absent segments utilizes the normalized
least mean squares (LMS) (NLMS) algorithm:

f̃(ℓ+ 1) = f̃(ℓ) +
µ

λ̃u(ℓ)
ũ(ℓ)ỹ∗(ℓ) (8)

where the noise reference signals at the output of the BM are
denoted ũ(ℓ) = B̃

†
z(ℓ), the output of the TF-GSC is denoted

ỹ(ℓ) = w̃†z(ℓ), the adaptation step is 0 < µ < 2, λ̃u(ℓ) is a
power normalization factor:

λ̃u(ℓ+ 1) = ρλ̃u(ℓ) + (1− ρ)∥ũ(ℓ)∥2, (9)

and ρ is a forgetting factor (typically 0.8 < ρ < 1).
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Fig. 1. A block-diagram of the DS-GSC.

4. THE DS-GSC

A two-stage distributed enhancement TF-GSC BF algorithm,
denoted as DS-GSC, is now proposed. The first stage consists
of N TF-GSC-BFs which process local signals at each node.
The output signals of the first stage are broadcasted in the
WASN. The second stage consists of a global TF-GSC BF
which processes the N outputs of the first stage. A replica of
the global BF is concurrently applied in all nodes.

Denote the first stage output at the nth node as ẏn(ℓ) for
n = 1, .., N . Let the concatenated N outputs of the first stage
be ẏl(ℓ) = Ẇ

†
l z(ℓ) =

[
ẏ1(ℓ) · · · ẏN (ℓ)

]T , where the
subscript l denotes local, the N local BFs are given in a matrix
notation by Ẇl =

[
U1ẇ1 · · · UN ẇN

]
, and ẇn are

filters of the first stage TF-GSC BF at the nth node:

ẇn = q̇n − Ḃnḟn. (10)

Note that Ẇl is an M × N matrix. The local FBF, BM and
NC at the nth node are denoted q̇n, Ḃn and ḟn, respectively.
The total output of the DS-GSC is given by ẏg(ℓ) = ẇ†

gẏl(ℓ)
where the subscript g denotes global and

ẇg = q̇g − Ḃg ḟg (11)

is the second stage global TF-GSC BF. The second stage
FBF, BM and NC are denoted by q̇g , Ḃg and ḟg, respec-
tively. A block-diagram of the DS-GSC algorithm is depicted
in Fig. 1.

The proposed algorithm consists of three phases: first,
the local RTFs are estimated, and the local FBFs and BMs
are constructed; second, the global RTFs are estimated, and
the global FBF and BM are constructed; third, the local and
global NCs are alternatingly updated until convergence. The
first two phases are only applied once in static environments.
We adopt in our implementation a standard subspace-based
RTF estimation procedure [7], where a perfect voice activity
detector (VAD) is assumed.

The local and global stage filtering are presented in
Secs. 4.1 and 4.2, respectively. In Sec. 4.3 we present an it-

erative algorithm for updating the NCs, and prove its conver-
gence. Later, in Sec. 4.4 we derive a time-recursive variant.

4.1. Local stage filtering

Denote by ḣn the local RTF, which equals the ATF relat-
ing the desired signal and the local microphone signals at the
nth node normalized by its first component, ḣn = U†

nh/(
U†

nh
)
1
. The local TF-GSC BF at the nth node is designed

to satisfy the constraint ḣ
†
nẇn = 1, therefore the desired sig-

nal component at its output is hn,1s(ℓ). Similarly to (5) and
(6) the local FBF is given by:

q̇n =
ḣn

∥ḣn∥2
(12)

and the local BM, Ḃn, is constructed by the Mn − 1 left sin-
gular vectors, corresponding to the zero singular values in the
SVD of ḣn.

4.2. Global stage filtering

Denote by ḣg the global RTF, which equals the ATF relating
the desired signal and the local output signals ẏl(ℓ), normal-

ized by its first component ḣg =
˙W

†
lh

h1
. Note, that the fixed

response of the desired source at the local outputs, simplifies
the global RTF estimation in static scenarios. Following sim-

ilar arguments to (5) and (6) the global FBF is q̇g =
˙hg

∥ ˙hg∥2

and the global BM, Ḃg , is constructed by the N − 1 left sin-
gular vectors, corresponding to the zero singular values in the
SVD of ḣg. Consequently, the desired signal component at
the BF output is h1s(ℓ).

4.3. Iterative algorithm

Following the results of previous sections, the noise compo-
nent at the output of the DS-GSC is:

v̇(ℓ) = ẇ†
gẆ

†
lv(ℓ) = ẇ†

lẆ
†
gv(ℓ). (13)

where Ẇg is an M ×M diagonal matrix given by

Ẇg = blkdiag {ẇg,1IM1 , .., ẇg,NIMN } (14)

and ẇl is a concatenation of the local GSC-BFs:

ẇl = q̇l − Ḃl ḟ l (15)

and its components are given by:

q̇l =
[
q̇†
1 · · · q̇†

N

]†
(16a)

Ḃl =blkdiag
{
Ḃ1, .., ḂN

}
(16b)

ḟ l =
[
ḟ
†
1 · · · ḟ

†
N

]†
. (16c)

1276



The variance of the noise component (13) is:

γ =ẇ†
gẆ

†
lΦvvẆlẇg (17a)

=ẇ†
lẆ

†
gΦvvẆgẇl. (17b)

Since the FBFs and BMs have been already determined (recall
that the acoustic scenario is static), only the NC filters ḟ l and
ḟg should be set for minimizing the residual noise power. The

concatenated NCs vector is denoted by ḟ =
[
ḟ
†
l ḟ

†
g

]†
.

We propose an iterative algorithm comprised of two al-
ternating steps sequentially: first, updating the local NCs ḟ l;
second, updating the global NC ḟg. We denote values at the
ith iteration with the superscript (·)(i).

Consider the first update step, i.e., ḟ
(i)

g is updated to ḟ
(i+1)

g

while ḟ
(i+1)

l = ḟ
(i)

l remains fixed. An explicit expression of

(17a) in terms of ḟ
(i)

g at the ith iteration is given by:

γ(i) =
(
q̇g − Ḃg ḟ

(i)

g

)† (
Ẇ

(i)

l

)†
ΦvvẆ

(i)

l

(
q̇g − Ḃg ḟ

(i)

g

)
.

(18)

Equation (18) is a quadratic function of ḟ
(i)

g , allowing for a
simple calculation of the gradient with respect to ḟg:

∂γ(i)

∂ ḟ
†
g

= −Ḃ
†
g

(
Ẇ

(i)

l

)†
ΦvvẆ

(i)

l

(
q̇g − Ḃg ḟg

)
. (19)

The updated ḟg is obtained by equating the gradient to zero:

ḟ
(i+1)

g =

(
Ḃ

†
g

(
Ẇ

(i)

l

)†
ΦvvẆ

(i)

l Ḃg

)−1

· Ḃ†
g

(
Ẇ

(i)

l

)†
ΦvvẆ

(i)

l q̇g. (20)

Consider the second update step, i.e., ḟ
(i)

l is updated to

ḟ
(i+1)

l while ḟ
(i+1)

g = ḟ
(i)

g remains fixed. An explicit expres-
sion of (17b) at the ith iteration is given in terms of ḟ l by:

γ(i) =
(
q̇l − Ḃl ḟ

(i)

l

)† (
Ẇ

(i)

g

)†
Φvv

(
Ẇ

(i)

g

)† (
q̇l − Ḃl ḟ

(i)

l

)
.

(21)

Equation (21) is a quadratic function of ḟ l. The gradient of
γ(i) with respect to ḟ l is:

∂γ(i)

∂ ḟ
†
l

=− Ḃ
†
l

(
Ẇ

(i)

g

)†
Φvv

(
Ẇ

(i)

g

)† (
q̇l − Ḃl ḟ l

)
(22)

yielding

ḟ
(i+1)

l =

(
Ḃ

†
l

(
Ẇ

(i)

g

)†
ΦvvẆ

(i)

g Ḃl

)−1

· Ḃ†
l

(
Ẇ

(i)

g

)†
ΦvvẆ

(i)

g q̇l. (23)

It can be easily verified that the proposed algorithm con-
verges. First, γ(i+1) ≤ γ(i) is monotonically non-increasing,

since ḟ
(i)

belongs to the minimization range of ḟ
(i+1)

. Sec-
ond, γ(i) is trivially lower bounded by 0 ≤ γ(i). In practice
the iterative algorithm cannot be implemented, since updating
ḟ l (23) involves non-local quantities unavailable at each node.
However, a practical time-recursive algorithm can be derived,
as presented in the sequel.

4.4. Time-recursive algorithm

A time-recursive procedure for updating the NCs is obtained
by using two NLMS algorithms for updating ḟg(ℓ) and ḟ l(ℓ)
alternately, during speech-absent time segments. As in all
stochastic approximation procedures, we propose to replace
the iteration index i by the segment index ℓ. We further pro-
pose to perform Lu updates of each filter before switching to
the other filter updates.

Consider an update step of ḟg(ℓ) to ḟg(ℓ + 1) while
ḟ l(ℓ + 1) = ḟ l(ℓ) is unaltered. An instantaneous estimate
of the gradient (19) at the ℓth frame is −u̇g(ℓ)v̇

∗(ℓ) where

u̇g(ℓ) = Ḃ
†
gv̇l(ℓ), and v̇l(ℓ) is the noise component in ẏl(ℓ).

The updated ḟg(ℓ+ 1) is therefore:

ḟg(ℓ+ 1) = ḟg(ℓ) +
µ

λ̇u,g(ℓ)
u̇g(ℓ)v̇

∗(ℓ) (24)

where, similarly to (9), λ̇u,g(ℓ) is a time-recursive estimate of
the power normalization. Similarly, we can define an update
step of ḟ l(ℓ) to ḟ l(ℓ + 1) while ḟg(ℓ + 1) = ḟg(ℓ). An in-
stantaneous estimate of the gradient (22) at the ℓth frame is
−Ẇ

†
g(ℓ)u̇l(ℓ)v̇

∗(ℓ), where u̇l(ℓ) = Ḃ
†
l z(ℓ). Note that the

calculation of the nth component of the estimated gradient
can be done locally. Hence, ḟn(ℓ + 1); n = 1, .., N can be
updated in parallel:

ḟn(ℓ+ 1) = ḟn(ℓ) +
µ

λ̇n
u,l(ℓ)

ẇ∗
g,n(ℓ)u̇n(ℓ)v̇

∗(ℓ) (25)

where, as in (9), λ̇n
u,l(ℓ) is a power normalization factor.

5. EXPERIMENTAL STUDY

An experimental study of three algorithms using multiple
Monte-Carlo trials is presented. We compare the centralized
TF-GSC, the time-recursive DS-GSC and the local TF-GSC
(a TF-GSC BF which utilizes only the microphones of a the
first node). A WASN comprised of N = 4 nodes, each con-
sisting of Mn = 2 microphones was simulated. The perfor-
mance of the BFs was evaluated by using the signal to total
interference ratio (SIR) improvement.
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Fig. 2. SIR improvement versus the number of interferences
with narrowband signals.

5.1. Narrowband signals

The performance of the algorithms was tested with various
numbers of interfering sources (1, 3, 5, 7). For each number
of interfering sources, 20 different sets of desired source ATFs
and noise covariance matrices were randomized at a particular
frequency bin. For each set, 10 realizations of 105 samples of
the desired and interfering narrowband sources were random-
ized (white Gaussian processes). Also, a spatially white noise
was added to the received signals. The input SIR and signal
to noise ratio (SNR) were set to 5dB and 30dB, respectively.
In total, 800 Monte-Carlo experiments were tested. The al-
gorithm parameters were set to: µ = 0.15, ρ = 0.95 and
Lu = 12. The SIR improvement of the proposed DS-GSC
exhibits equivalent performance to the centralized TF-GSC
in all Monte-Carlo experiments, and both significantly out-
perform the local TF-GSC. The average SIR improvement
versus the number of interferences is depicted in Fig. 2.

5.2. Speech signals

A 4m × 3m × 3m room with a reverberation time of T60 =
300ms was simulated. Four nodes were arbitrarily positioned
at the center of the walls. The locations of the desired speaker
and the two interfering sources were randomized with a min-
imum distance of 10cm from the walls in 100 Monte-Carlo
experiments. An additive spatially white noise was added to
the received signals. The input SIR and SNR were set to 6dB
and 60dB, respectively. The sample rate was 8KHz and a
4096 point STFT with 75% overlap was used. The algorithm
parameters were set to µ = 0.15, ρ = 0.95 and Lu = 12.
The average SIR improvement of the centralized TF-GSC,
the DS-GSC and the local TF-GSC were 26.4dB, 28.6dB and
12.2dB, respectively. Theoretically, the DS-GSC cannot out-
perform the centralized TF-GSC, but in our experiments a
2.2dB improvement of the DS-GSC was recorded. This can
be attributed to the finite segment length and the lengths of
the different equivalent filters applied in each scheme.

6. CONCLUSIONS

A DS-GSC algorithm was proposed and both iterative and
time-recursive adaptation procedures were derived. In static
scenarios, only a single estimate of the speech RTF is re-
quired, as opposed to closed-form based distributed algo-
rithms, which require repeated RTFs estimations. The conver-
gence of the proposed algorithm was proven, however con-
vergence to the optimal TF-GSC was beyond of the scope
of the current contribution. A comprehensive experimental
study demonstrates the equivalence between the centralized
TF-GSC and the proposed DS-GSC.

7. REFERENCES

[1] A. Bertrand, “Applications and trends in wireless acous-
tic sensor networks: A signal processing perspective,”
Proc. IEEE Symposium on Communications and Vehic-
ular Technology (SCVT), (Ghent, Belgium), Nov. 2011.

[2] B. D. Van Veen and K. M. Buckley, “Beamforming:
A versatile approach to spatial filtering,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 5, no. 2, pp. 4–24,
Apr. 1988.

[3] S. Doclo, A. Spriet, J. Wouters, and M. Moonen, “Speech
distortion weighted multichannel Wiener filtering tech-
niques for noise reduction,” in Speech Enhancement,
J. Benesty, S. Makino, and J. Chen, Eds., pp. 199–228.
Springer, 2005.

[4] S. Doclo, M. Moonen, T. Van den Bogaert, and
J. Wouters, “Reduced-bandwidth and distributed MWF-
based noise reduction algorithms for binaural hearing
aids,” IEEE Trans. Audio, Speech and Language Pro-
cess., vol. 17, no. 1, pp. 38–51, Jan. 2009.

[5] A. Bertrand and M. Moonen, “Distributed adaptive node-
specific signal estimation in fully connected sensor net-
works – part I: Sequential node updating,” IEEE Trans.
on Signal Process., vol. 58, no. 10, pp. 5277–5291, Oct.
2010.

[6] S. Gannot, D. Burshtein, and E. Weinstein, “Signal en-
hancement using beamforming and nonstationarity with
applications to speech,” IEEE Trans. on Signal Process.,
vol. 49, no. 8, pp. 1614–1626, Aug. 2001.

[7] S. Markovich-Golan, S. Gannot, and I. Cohen, “A
reduced bandwidth binaural MVDR beamformer,” in
Proc. Int. Workshop on Acoustic Echo and Noise Control
(IWAENC), Tel Aviv, Israel, Aug. 2010.

[8] A. Bertrand and M. Moonen, “Distributed node-specific
LCMV beamforming in wireless sensor networks,” IEEE
Trans. on Signal Process., vol. 60, no. 1, pp. 233 –246,
Jan. 2012.

1278


