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ABSTRACT
This paper aims to study the problem of imaging device iden-
tification using the heteroscedastic property of uncompressed
image noise. Noise variance depends on pixels intensity
through two parameters which uniquely represent a camera
model and hence, enable to identify imaging device. The de-
cision problem is cast in the framework of hypothesis testing
theory. First, the theoretical context in which both the in-
spected image parameters and imaging device properties are
known is considered. The most powerful Likelihood Ratio
Test (LRT) is presented and its detection performance is an-
alytically calculated. Then, the practical situation when in-
spected image parameters are unknown, but imaging device
properties remain known, is studied. Based on a simple yet
efficient image model, the inspected image parameters are es-
timated. This leads to the designed Generalized Likelihood
Ratio Test (GLRT) whose statistical performances are analyt-
ically given. Numerical simulations and experimentations on
natural images show the relevance of the proposed approach.

Index Terms— Hypthesis testing, Information forensics,
Noise and system model, Camera model identification.

1. INTRODUCTION

It is nowadays within the reach of anyone to easily manipulate
a digital image by using image editing software. Therefore,
the use of such medium as a reliable witness has been ques-
tioned, in a court for instance. In this context, it becomes
a crucial and useful challenge for security forces to be able
to warrant origin and integrity of digital images. This paper
address the problem of imaging device identification, which
belongs to digital forensics.

Several approaches have been proposed in the literature
to solve the problem of imaging device identification [1].
The state-of-the-art methods investigate the image processing
pipeline in order to identify characteristics which are unique
for each camera and could thus identify the source camera.
On the one hand, the majority of latest algorithms exploits
specific fingerprint in the acquisition stage such as lens aber-
ration [2], sensor imperfections [3]. On the other hand, the
post-acquisition processes inherent to image acquisition have
also been explored. Particularly, it is proposed in [4] to use
CFA interpolation assuming that the interpolation algorithm
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and the design of the CFA filter pattern of each camera model
are somewhat different from others. Additionally, an ap-
proach based on supervised learning has also been investi-
gated in [5]. As in all applications of machine learning the
two main difficulties are the choice of accurate features set
and the establishment of detection performance which remain
an open problem.

In an operational context, the design of an accurate detec-
tor might not be enough. The most important and challeng-
ing problem is to provide a test with analytically predictable
results. Methods already proposed in the literature for the
problem of camera identification from a single image are very
interesting and efficient. However, they have been designed
with a very limited exploitation of hypothesis testing theory
and a lack of a statistical image model. Therefore their detec-
tion performance can only be approximated using simulation
on a large database. Similarly exploiting imaging device im-
perfection might lead to a lack of robustness especially if one
intent to correct such defect using a calibration process.

In this paper, it is proposed to exploit hypothesis test-
ing theory based on a statistical noise model of natural raw
images [6]. The main contribution is twofold. First, when
image and camera parameters are known, the most power-
ful test is designed and its statistical performances are theo-
retically calculated. Second, the practical context in which
the image parameters are unknown is considered. To over-
come the difficulty of a presence of nuisance parameters, a
GLRT is designed using their Maximum Likelihood Estima-
tion (MLE) and the detection probability is analytically es-
tablished. This enables to warrant a prescribed constraint on
false-alarm probability.

The paper is organized as follows. The statistical noise
model of natural raw images is presented and the problem
of camera model identification is stated in section 2. The
theoretical context in which inspected image parameters and
camera noise properties are known is addressed in section 3.
Based on the MLE proposed in [7], section 4 is devoted to de-
sign the GLRT and then establish statistical performances of
the proposed test. Numerical results are presented in section
5 and section 6 concludes the paper.

2. STATISTICAL NOISE MODEL

Let Z = {zi}M
i=1 be a vector representing a natural image of

M = Mx×My grayscale level pixels. This paper mainly fo-
cuses on raw images which can be simply modeled by con-
sidering the image acquisition process [6]. Indeed, the photo-
electron conversion essentially consists in a counting process

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 1747



Fig. 1: Heteroscedastic relation between expectation and vari-
ance of a natural image.

which can be modeled as a Poisson process. Hence, the num-
ber of electrons collected on i-th pixel, denoted Nei is given
by:

Nei ∼P(ηi N pi +Nti) (1)

where N pi is the number of incident photons, ηi is a con-
version factor representing filter transmittance and quantum
sensitivity, and Ntm is the number of dark electrons generated
by thermal noise. It is assumed that the photo-sensitivity and
the thermal noise are constant for every pixel, the index i is
therefore omitted from η and Nt.

The number of collected electrons is then transferred to
a read-out unit. During the read-out process, recorded sig-
nal is corrupted by different sources of electronic noise which
all can be modeled as a zero-mean Gaussian random variable
with variance σ2. Therefore, the value of raw pixel zi is fi-
nally given by [6, 7]:

zi ∼ aN (Nei,σ
2). (2)

where a is a sensitivity factor related to ISO speed number.
For the sake of simplification, the Normal approximation of
the Poisson distribution may be exploited due to the large
number of counted electrons. It finally follows that :

zi ∼N (µi, aµi +b) (3)

where µi = a(ηN pi +Nt) and b = a2σ2.
Equation (3) shows that the expectation and variance of

pixel follow a heteroscedastic relation in which the variance
linearly depends on the expectation. Moreover, this relation is
entirely defined by the two parameters a and b which change
for different camera models. An example is given in fig-
ure 1 which illustrates both the heteroscedastic relation and
the camera model dependence of parameters a and b for two
Nikon reflex camera, which are expected to exhibit similar
characteristics. In the present paper, it is proposed to exploit
this unique characteristic to identify the imaging device which
captured a given image.

3. LIKELIHOOD RATIO TEST FOR TWO SIMPLE
HYPOTHESES

3.1. Problem statement
The test aims to identify either camera 0 or camera 1 captured
the given image. Let us assume that the characteristics of two

cameras are known (e.g (a0,b0) and (a1,b1) respectively). In
such theoretical situation, it is desirable to decide between the
two following hypothesis :{

H0 : zi ∼ Pµi,a0,b0 = N (µi,σ
2
i,0),∀i ∈ {1, . . . ,M}

H1 : zi ∼ Pµi,a1,b1 = N (µi,σ
2
i,1),∀i ∈ {1, . . . ,M}

(4)

where σi, j =
√

a jµi +b j, j ∈ {0,1}. However, it can be ob-
served that µi acts as a nuisance parameter when it has no in-
terest for decision problem (4) while appearing in the model
of raw pixel. Hence, let us firstly suppose that the parame-
ter µi is exactly known. From Neyman-Pearson lemma [8,
theorem 3.2.1], the most powerful test δ1 over the class

Kα0 = {δ : P0[δ1(Z) = H1]≤ α0}

where P j[. . .] represents the probability under hypothesis
H j, j ∈ {0,1}, is given by the following decision rule :

δ1(Z) =


H0 if Λ1(Z) =

M

∏
i=1

Λ1(zi)< τα0

H1 if Λ1(Z) =
M

∏
i=1

Λ1(zi)≥ τα0

(5)

where the decision threshold τα0 is the solution of the equa-
tion P0[Λ1(Z)≥ τα0 ] = α0 to insure that δ1 ∈Kα0 . This most
powerful test maximizes the power

βδ1 = 1−P1[Λ1(Z)< τα0 ] (6)

over the class Kα0 .
Under assumption that µi is known, the distributions

Pµi,a j ,b j , j ∈ {0,1} are well defined. A short algebra shows
that the Likelihood Ratio (LR) for one observation zi is given
by :

Λ1(zi) =
Pµi,a1,b1

Pµi,a0,b0

=
σi,0

σi,1
exp
[ (zi−µi)

2

2σ2
i,0
− (zi−µi)

2

2σ2
i,1

]
(7)

Subsequently, the log-likelihood ratio can be computed as :

logΛ1(zi) = log
σi,0

σi,1
+

σ2
i,1−σ2

i,0

2σ2
i,1σ2

i,0
(zi−µi)

2 (8)

It can be noted that the first term of (8) remains unchanged
under either H0 or H1. Hence, let us define the equivalent
log LR for the sake of clarity :

logΛ
?
1(zi) =

σ2
i,1−σ2

i,0

σ2
i,1σ2

i,0
(zi−µi)

2 (9)

Therefore, the equivalent test is defined by :

δ
?
1 (Z) =


H0 if Λ

?
1(Z) =

M

∏
i=1

Λ
?
1(zi)< τ

?
α0

H1 if Λ
?
1(Z) =

M

∏
i=1

Λ
?
1(zi)≥ τ

?
α0

(10)

where τ?α0
is the solution of the equation P0[Λ

?
1(Z) ≥ τ?α0

] =
α0.
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3.2. Statistical performance of the test
Characterizing the distribution of logΛ?

1(Z) is of crucial im-
portance to analytically compute the test performance. How-
ever, the exact distribution of logΛ?

1(Z) can not be explicitly
given. Alternatively, an asymptotic approach can be exploited
because the number of pixels M is sufficiently large in any
natural image. It follows from the Lindeberg central limit
theorem (CLT) [8, theorem 11.2.5] that :

∑
M
i=1 logΛ?

1(zi)−∑
M
i=1E j

[
logΛ?

1(zi)
]

√
∑

M
i=1 Var j

[
logΛ?

1(zi)
] D→N (0,1) (11)

where E j and Var j denote respectively the mathematical ex-

pectation and variance under H j, j ∈ {0,1}, and D→ repre-
sents the convergence in distribution. As a result, logΛ?

1(Z)
can be asymptotically distributed as :

logΛ
?
1(Z)∼N

(
m(1)

j ,v(1)j

)
(12)

where

m(1)
j =

M

∑
i=1

E j

[
logΛ

?
1(zi)

]
v(1)j =

M

∑
i=1

Var j

[
logΛ

?
1(zi)

]
(13)

Because zi ∼N (µi,σ
2
i, j), it is immediate to verify that(

zi−µi

σi, j

)2

∼ χ
2
1 under H j (14)

Hence, for one observation zi, the expectation and variance of
logΛ?

1(zi) can be computed as :

E0

[
logΛ

?
1(zi)

]
= 1−

σ2
i,0

σ2
i,1

Var0

[
logΛ

?
1(zi)

]
= 2
(

1−
σ2

i,0

σ2
i,1

)2

E1

[
logΛ

?
1(zi)

]
=

σ2
i,1

σ2
i,0
−1

Var1

[
logΛ

?
1(zi)

]
= 2
(σ2

i,1

σ2
i,0
−1
)2

(15)

For the sake of clarity, let us define the normalized log LR

log Λ̃1(Z) =
logΛ?

1(Z)−m(1)
0√

v(1)0

(16)

Theorem 1. Assuming that parameters µi, a j, b j are exactly
known, the decision threshold of the test δ ?

1 (10) is given by :

τ̃α0 = Φ
−1(1−α0) (17)

Theorem 2. Consequently, the power of the test δ ?
1 based on

log Λ̃1(Z) is given by :

βδ ?
1
= 1−Φ

m(1)
0 −m(1)

1 + τ̃α0

√
v(1)0√

v(1)1

 (18)

where Φ and Φ−1 are respectively the standard normal cu-
mulative distribution function (cdf) and its inverse, m(1)

j , v(1)j ,
j = 0,1 are computed from (13) and (15).

4. UNKNOWN IMAGE PARAMETERS

4.1. Problem statement
In a practical context, the image parameters are unfortunately
unknown. In such case of nuisance parameters, the LR can
not be directly computed because the distributions Pµi,a j ,b j ,
j ∈ {0,1} are not defined. Hence, the Generalized Likelihood
Ratio Test based on the ML estimate µ̂i of µi can be used :

δ2(Z) =


H0 if Λ̂2(Z) =

M

∏
i=1

Λ̂2(zi)< τα0

H1 if Λ̂2(Z) =
M

∏
i=1

Λ̂2(zi)≥ τα0

(19)

where

Λ̂2(zi) =
supµi

Pµi,a1,b1

supµi
Pµi,a0,b0

=
Pµ̂i,a1,b1

Pµ̂i,a0,b0

(20)

The estimation quality of µi will affect on the statistical
performance of the test. Therefore, an algorithm which can
provide a reliable estimate µ̂i in a given noisy image is of
crucial importance.

4.2. Expectation estimation
The estimation algorithm is clearly presented in [7]. First, the
noisy image is transformed to the wavelet domain to facilitate
the noise analysis and then segmented into K non-overlapping
level sets where the data is smooth. It can be reasonably as-
sumed that each level set tend to be an uniform region. There-
fore, the pixels in each level set may be independent and iden-
tically distributed. Let zwapp

k = {zwapp
k,i }

nk
i=1 be the vector of

wavelet approximation coefficients representing the level set
k which contains nk pixels. These coefficients are hence dis-
tributed as :

z
wapp
k ∼N (µk,‖ϕ‖2

2 σ
2
k, j) under H j, j = 0,1 (21)

where σk, j =
√

a jµk +b j and ϕ is the 2-D normalized
wavelet scaling function. Hence, the MLE of the expectation
µk in each level set k can be defined as :

µ̂k =
1
nk

nk

∑
i=1

zwapp
k,i (22)

The distribution of µ̂k can be subsequently defined as :

µ̂k ∼N (µk,ckσ
2
k, j) under H j, j ∈ {0,1} (23)
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where ck =
‖ϕ‖22

nk
.

As a result, the GLRT can be written as follows :

δ2 =


H0 if Λ̂2(Z) =

K

∏
k=1

nk

∏
i=1

Λ̂2(z
wapp
k,i )< τα0

H1 if Λ̂2(Z) =
K

∏
k=1

nk

∏
i=1

Λ̂2(z
wapp
k,i )≥ τα0

(24)

where τα0 is the solution of the equation P0[Λ̂2(Z) ≥ τα0 ] =

α0. The GLR Λ̂2(z
wapp
k,i ) is given by :

Λ̂2(z
wapp
k,i ) =

σ̂k,0

σ̂k,1
· exp

[ σ̂2
k,1− σ̂2

k,0

2‖ϕ‖2
2σ̂2

k,1σ̂2
k,0

(zwapp
k,i − µ̂k)

2
]

(25)

where σ̂k, j =
√

a j µ̂k +b j, j ∈ {0,1}.

4.3. Statistical performance of the test
Let consider two functions

g(x) = log
a0x+b0

a1x+b1
h(x) =

1− a0x+b0
a1x+b1

2

which are continuous and differentiable on R+. Their deriva-
tive can be expressed as :

g′(x) =
a0b1−a1b0

(a0x+b0)(a1x+b1)
h′(x) =

a1b0−a0b1

2(a1x+b1)2

It can be noted that their derivative is equal zero if and only if
two cameras 0 and 1 are identical. For obvious reasons, this
case is not considered in the present paper.

Taking the logarithm of Λ̂2(z
wapp
k,i ), a straightforward cal-

culation from (25) permits to have :

log Λ̂2(z
wapp
k,i ) =

1
2

g(µ̂k)+h(µ̂k)
(zwapp

k,i − µ̂k)
2

‖ϕ‖2
2σ̂2

k,0
(26)

Under hypothesis H0, it follows from the Delta method [8,
theorem 11.2.14] that :

g(µ̂k)
D→N

(
g(µk), (g′(µk))

2ckσ
2
k,0

)
h(µ̂k)

D→N
(

h(µk), (h′(µk))
2ckσ

2
k,0

) (27)

Moreover, it can be asymptotically shown that :

(zwapp
k,i − µ̂k)

2

‖ϕ‖2
2σ̂2

k,0
∼ χ

2
1 under H0 (28)

Consequently, the two first moments of log Λ̂2(z
wapp
k,i ) under

H0 can be computed as :

E0

[
log Λ̂2(z

wapp
k,i )

]
=

1
2

g(µk)+h(µk)

Var0

[
log Λ̂2(z

wapp
k,i )

]
=

1
4

Var0[g(µ̂k)]+Var0[h(µ̂k)]

+ 2
(

Var0[h(µ̂k)]+h2(µk)
)

(29)

where Var0[g(µ̂k)] and Var0[h(µ̂k)] can be directly derived
from (27).

Similarly, a little calculation permits to obtain the two first
moments of log Λ̂2(z

wapp
k,i ) under H1 :

E1

[
log Λ̂2(z

wapp
k,i )

]
=

1
2

g(µk)+q(µk)

Var1

[
log Λ̂2(z

wapp
k,i )

]
=

1
4

Var1[g(µ̂k)]+Var1[q(µ̂k)]

+ 2
(

Var1[q(µ̂k)]+q2(µk)
)

(30)

where

q(x) =
a1x+b1
a0x+b0

−1

2
and

g(µ̂k)
D→N

(
g(µk), (g′(µk))

2ckσ
2
k,1

)
q(µ̂k)

D→N
(

q(µk), (q′(µk))
2ckσ

2
k,1

) under H1

(31)
On the other hand, an application of the Lindeberg CLT pro-
vides :

log Λ̂2(Z)
D→N

(
m(2)

j ,v(2)j

)
under H j (32)

where 
m(2)

j =
K

∑
k=1

nk

∑
i=1

E j

[
log Λ̂2(z

wapp
k,i )

]
v(2)j =

K

∑
k=1

nk

∑
i=1

Var j

[
log Λ̂2(z

wapp
k,i )

] (33)

Because µk is unknown in the practical context, the ex-
pectation and variance of log Λ̂2(Z) are not defined. Hence,
µk can be replaced by µ̂k in (29) and (30) to finally obtain the
estimation of m(2)

j and v(2)j , denoted m̂(2)
j , v̂(2)j respectively.

For the sake of clarity, let us define the normalized log LR

log Λ̂
?
2(Z) =

log Λ̂2(Z)− m̂(2)
0√

v̂(2)0

(34)

Theorem 3. For any natural image whose parameters are
unknown, the decision threshold τ?α0

is given by :

τ
?
α0

= Φ
−1(1−α0) (35)

Theorem 4. The power of the test δ2 based on log Λ̂?
2(Z) is

given by :

βδ2 = 1−Φ

 m̂(2)
0 − m̂(2)

1 + τ?α0

√
v̂(2)0√

v̂(2)1

 (36)

It can be noted that the main advantage of using log Λ̂?
2(Z)

defined in (34) is that the decision threshold given in (35)
is independent from image parameters and thus remains the
same for nay inspected image.
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Fig. 2: ROC for different numbers of pixels .

Fig. 3: ROC for different camera parameters .

5. NUMERICAL RESULTS

To emphasis the efficiency of the proposed test, a Monte
Carlo simulation was performed on a synthetic image with
1000 repetitions while considering different numbers of pix-
els and different imaging device parameters. Figure 2 shows
the detection performance as a Receiver Operating Charac-
teristic (ROC) respectively for M = {50,100,200} pixels in
which the camera 0 and 1 are characterized by a0 = 0.0115,
b0 = 2.56 10−4 and a1 = 0.0195, b1 = 2.56 10−4. These val-
ues correspond to Nikon D70 and Nikon D200 respectively.
It turns out that the test power significantly drops when the
number of pixels decreases.

Similarly, figure 3 shows the detection performance ob-
tained by keeping the camera 0 parameters and setting cam-
era 1 ones to a1 = {0.0195,0.015,0.012}. A total number of
M = 200 pixels is considered. As expected, figure 3 shows
that when the parameter a1 tends to a0, the proposed test
power declines and the ROC curves tends to βδ = α0.

Finally, the experiments were conducted on the Dresden
image database [9] captured by the Nikon D70 and Nikon
D200 camera. Similarly to figure 2, the results presented
in figure 4 show the empirical ROC for different numbers
of pixels. These results are near to the ones obtained with
a synthetic image presented in figure 2 and the small loss of
optimality can be explained by the following reasons. First,
the clipping or censoring phenomenon [7] have not been
taken into account in proposed method and the segmentation
method used to obtain the level sets is probably not perfect.
These might lead to a slight error in the estimation of vari-
ance in each level set. Second, the number of images in Dres-
den database is rather small, thus the estimation of parameters
(a,b) might be slightly biased. However, the test reveals abil-

Fig. 4: ROC for different numbers of pixels on Dresden image
database .

ity of identifying the camera models with a high performance
even when the image parameters are unknown and the cam-
era model exhibit similar characteristics. Indeed, for only 500
pixels, the camera model identification is mostly perfect.

6. CONCLUSION

The paper provides an approach based on the statistical de-
cision theory for the problem of camera model identification.
A statistical noise model is exploited and is characterized by
two parameters which can identify the imaging device . The
main contribution of the paper is to design an efficient test in
presence of nuisance parameters when putting into a practical
context. The two first moments of the GLRT are obtained and
the statistical performances of the test are analytically com-
puted as well. The paper encourages a deeper research when
considering that the imaging device properties are unknown.
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