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ABSTRACT

Compressed sensing has recently shown much interest

for ultrasound imaging. In particular, exploiting the sparsity

of ultrasound images in the frequency domain, a specific

random sampling of ultrasound images can be used advanta-

geously for designing efficient Bayesian image reconstruction

methods. We showed in a previous work that assigning in-

dependent Bernoulli Gaussian priors to the ultrasound image

in the frequency domain provides Bayesian reconstruction

errors similar to a classical ℓ1 minimization technique. How-

ever, the advantage of Bayesian methods is to estimate the

sparsity level of the image by using a hierarchical algorithm.

This paper goes a step further by exploiting the spatial corre-

lations between the image pixels in the frequency domain. A

new Bayesian model based on a correlated Bernoulli Gaus-

sian model is proposed for that purpose. The parameters of

this model can be estimated by sampling the corresponding

posterior distribution using an MCMC method. The result-

ing algorithm provides very low reconstruction errors even

when reducing significantly the number of measurements via

random sampling.

Index Terms— Ultrasound imaging, compressed sens-

ing, Bayesian inference, Markov random field.

1. INTRODUCTION

Ultrasound (US) imaging is one of the most popular medi-

cal imaging techniques and represents the gold standard in

many crucial diagnostic exams such as obstetrics and cardi-

ology. The main advantages of US imaging are its relatively

low cost, its innocuity for the patient, its ease of use and real

time nature. However, the real-time property is sometimes

limited by the acquisition time or by the high amount of ac-

quired data, especially in 3D ultrasound imaging. Even in

2D applications, a higher frame rate could be beneficial, i.e.,

for cardiac US monitoring. For this reason, a few research

groups have recently started to evaluate the feasibility of US

acquisitions using the compressive sampling (CS) framework

[1, 2]. In particular, Friboulet et al. have presented in [3]

a method for randomly sub-sampling the US raw data (sig-

nals before beamforming and classically used in US imag-

ing for obtaining the radiofrequency (RF) lines). The idea

investigated in [3] is missing data reconstruction using the

assumption of sparsity in the wave-atom domain and a gra-

dient based optimization technique. Another attempt of us-

ing the CS framework in US imaging has been presented in

[4]. More precisely, an acquisition scheme and a numerical

reconstruction have been introduced starting from the analog

domain and based on the hypothesis that US axial profiles of

the images (the RF lines) can be modeled by pulse streams.

We have recently studied a new CS technique for US im-

ages based on: i) specific sampling schemes adapted to US

acquisition and respecting the constraints of incoherence and

ii) numerical reconstruction techniques for RF images [5–7].

Concerning the sampling schemes adopted for RF US images,

two sampling masks have been investigated. The first mask,

which guarantees maximal incoherence with the sparsifying

basis (the Fourier domain in our case), is a uniform random

pattern in the two spatial directions. The second mask, less

incoherent with the Fourier domain but far more adapted to

US imaging, considers that randomly chosen columns of the

RF images (in other words randomly chosen RF lines) are not

sampled at all. With the second sampling pattern, the num-

ber of US emitted pulses necessary for the acquisition of one

image can be reduced. As a consequence the acquisition time

is accelerated. For this reason, this paper concentrates on this

second decimation pattern.

Concerning the missing data reconstruction, a classical

gradient based technique was initially investigated [5–7].

However, a new Bayesian method has been recently proposed

in [8]. This Bayesian method is based on a Bernoulli Gaus-

sian prior for the US image Fourier transform (FT). Despite

the reconstruction errors equivalent to those obtained by vari-

ational techniques (for the 2D random pattern sampling), the

Bayesian reconstruction is interesting since it does not re-

quire any hyperparameter adjustment and allows the sparsity

level in the Fourier domain to be estimated. However, the re-

sults presented in [8] focused only on the completely random

decimation pattern which is not always realistic in practical

applications.

In this paper, we propose to improve the Bayesian model

used in [8] by exploiting the spatial correlations between non-

zero pixels in the Fourier domain. In the literature, a simi-

lar idea has recently been explored for reconstructing cluster

structured sparse signals [9]. In US imaging, the characteris-
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tics of the RF images (e.g., the RF lines are modulated sig-

nals) and the US acquisition (e.g., the properties of the point

spread function may be partially known) allow some assump-

tions on the image FT to be made [10]. More precisely, we

can assume that the FT of an RF image is supported by two

symmetrical compact non-zero regions, located around the

central frequency of the US probe. This assumption is taken

into account in the Bayesian model proposed in this paper.

The paper is organized as follows: Section 2 introduces

the Bayesian model considered for US image reconstruction

and its corresponding posterior distribution. Section 3 stud-

ies a Gibbs sampler that can be used to generate samples dis-

tributed according to this posterior. Simulation results are pre-

sented in Section 4. Results on a realistic simulated US im-

age show that the proposed method outperforms the Bayesian

method of [8] and the ℓ1 minimization technique (based on a

conjugate gradient algorithm) recently studied in [5–7]. Con-

clusions are finally reported in Section 5.

2. BAYESIAN MODEL

CS consists of estimating a sparse signal x from a noisy ob-

servation vector y, from projections on a complex M × N

random matrix T (with M << N )

y = Tx + η (1)

where y = (y1, ..., yM )T ∈ CM is the measurement vector,

x = (x1, ..., xN )T ∈ CN is the unknown parameter vector

and η = (η1, ..., ηM )T ∈ C
M is an additive complex noise

including instrumentation errors and errors due to the signal

being only approximately sparse [8].

In our case, y represents the measured spatial samples

which consist of randomly skipping RF lines in the image

lateral direction [6], x is the FT of the US image to be recon-

structed and T = ΨF−1 is the sampling matrix, with Ψ indi-

cating the random positions of the measured spatial samples

andF−1 standing for the inverse Fourier matrix. The problem

addressed in this work consists of estimating the sparse signal

x from the random projections y. This sparse reconstruction

task is formulated as an estimation problem solved within a

Bayesian framework. The likelihood function and the param-

eter priors involved in the Bayesian model are introduced in

what follows.

2.1. Likelihood function

Assuming the additive noise in (1) is Gaussian complex with

zero mean and unknown variance σ2, the likelihood is

p
(

y|x, σ2
)

=
(

πσ2
)−N

exp

(

− 1

σ2
‖ y − Tx ‖2

2

)

where N is the number of image pixels and ‖x‖ =
√

xT x is

the standard ℓ2 norm.

2.2. Parameter priors

The prior distribution chosen for the image pixels x should

exploit the Gaussian properties of ultrasound images [11] and

the image sparsity in the frequency domain. In [8], each pixel

xi of the image has been assigned a prior defined as a mixture

of a centered complex normal distribution CN
(

0, σ2
x

)

and a

mass at the origin

p(xi|w, σ2
x) = (1−w)δ(|xi|)+

(

w

πσ2
x

)

exp

(

−|xi|2
σ2

x

)

(2)

where the hyperparameter w is the prior probability of hav-

ing a non-zero pixel in the image. A similar distribution has

already been proposed in [12] for sparse real signal recon-

struction. In [8] the image pixels of the 2D FT of the US

image have been assumed to be a priori independent. How-

ever, ultrasound signals are bandlimited and are commonly

assumed to be narrowband around the central frequency of

the probe [10]. As a consequence, we propose to enforce the

non-zero pixels of the 2D US image FT to be aggregated in

homogeneous regions. The strategy advocated to introduce

correlations between non-zero pixels is described below.

As noticed in [13], the prior distribution in (2) can be

rewritten

p(xi|w, σ2
x) =

∑

ǫ∈{0,1}

p(xi|qi = ǫ, σ2
x)P [qi = ǫ|w] (3)

where qi is a hidden binary variable indicating if xi is active

or not

qi =

{

1, if xi 6= 0;
0, otherwise.

Assigning independent Bernoulli distributions Be(w) as pri-
ors for the qi’s, i.e.,

P [qi = 1|w] = w

P [qi = 0|w] = 1 − w
(4)

and the conditional prior for xi

p(xi|qi, σ
2
x) = (1 − qi)δ(|xi|) +

(

qi

πσ2
x

)

exp

(

−|xi|2
σ2

x

)

.

exactly leads to (2). Forcing the non-zero pixels to be

grouped implies that the indicator variables qi are correlated

such that the prior probabilities (4) are no longer appropri-

ate. Conversely, we propose to model the indicator vector

q = [q1, . . . , qn] as a Markov random field (MRF), which

reduces here to the Ising model

p (q|β) ∝ exp



β

N
∑

i=1

∑

j∈Vi

κ(qi − qj)



 (5)

where the granularity coefficient β tunes the degree of homo-

geneity of the regions, κ(·) is the Kronecker function and Vi

denotes the index set of the neighboring pixels of xi.
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As in [8], the Bayesian model is complemented by a clas-

sical Jeffreys prior for the noise variance

f(σ2) ∝ 1

σ2

and a conjugate inverse gamma distribution with parameters

α0 and α1 for the non-zero pixel variance

σ2
x ∼ IG(α0, α1).

The hyperparameters α0 and α1 are fixed to constant val-

ues ensuring the resulting inverse gamma distribution is non-

informative.

The image to be reconstructed is then estimated from the

joint posterior distribution p(x,q, σ2, σ2
x|y), computed from

the following hierarchical Bayesian structure

p(x,q, σ2, σ2
x|y) ∝ p

(

y|x, σ2
)

p(σ2)

× p(x|q, σ2
x)p(q|β)p(σ2

x). (6)

We propose to use a Markov chain Monte Carlo (MCMC)

method (known as the Gibbs sampler) for generating vectors

that are asymptotically distributed according to the joint pos-

terior distribution (6). These generated vectors will be de-

noted as
{

x(t),q(t), σ2(t), σ
2(t)
x

}

t=1,...,NMC

. The Bayesian

estimators such as the maximum a posteriori (MAP) or the

minimum mean square error (MMSE) estimators relative to

the posterior (6) can then be approximated by using these gen-

erated samples (see [13] for more details).

3. GIBBS SAMPLER

To generate samples asymptotically distributed according to

(6), we propose to use a Gibbs sampler that iteratively sam-

ples according to the conditional distributions associated with

the joint posterior p
(

x,q, σ2, σ2
x|y

)

. The successive steps of

the Gibbs sampler are summarized below.

3.1. Sampling according to p
(

xi|x\i, qi, σ
2, σ2

x,y
)

The conditional distribution of each pixel xi given x\i (x\i

denotes the vector x whose ith element has been removed) is

governed by the associated indicator variable qi

xi|qi = 0 ∼ δ (|xi|)
xi|qi = 1,x\i, σ

2, σ2
x ∼ CN

(

µi, η
2
i

) (7)

with














η2
i =

(

1
σ2

x

+ ‖ti‖
2

σ2

)−1

µi = tH
i ei

η2
i

σ2

ei = y − ∑

j 6=i xiti

where ti is the ith column of T.

3.2. Sampling according to f
(

qi|q\i, xi, σ
2, σ2

x,y
)

The conditional probabilities of the indicator variables qi are

P
[

qi = 1|q\i, xi, σ
2
x

]

∝

w
(1)
i ,

1

πσ2
x

exp





∑

j∈Vi

βκ (1 − qj) −
|xi|2
σ2

x



 (8)

and

P
[

qi = 0|q\i

]

∝ w
(0)
i , exp





∑

j∈Vi

βκ (1 − qj)



 . (9)

Consequently, the indicator qi is distributed according to the

Bernoulli distribution Be
(

w̃
(1)
i

)

with w̃
(1)
i =

w
(1)
i

w
(1)
i

+w
(0)
i

.

3.3. Sampling according to f
(

σ2|x,q, σ2
x,y

)

The conditional distribution of the noise variance is shown to

be the following inverse gamma distribution

σ2|x,y ∼ IG
(

M, ‖y − Tx‖2
)

. (10)

3.4. Sampling according to f
(

σ2
x|x, σ2,q,y

)

The conditional distribution of the hyperparameter σ2
x (a pri-

ori variance for non zero pixels) is

σ2
x|x ∼ IG

(

n1 + α0, ‖x‖2 + α1

)

. (11)

4. SIMULATION RESULTS

This section studies the reconstruction results of a simulated

ultrasound image. The US image, representing an homoge-

nous medium crossed by a vessel, has been simulated using

Field II simulation program [14]. The simulation parameters

were: central frequency = 3MHz, axial sampling frequency

= 20MHz, number of simulated RF lines = 256, number of

scatterers = 10, 000. Note that for visualization reasons, we

do not show the RF images, but the corresponding so called

B-mode images, obtained after axial demodulation of each RF

line and log-compression.

Three reconstruction methods have been tested: the

proposed spatially regularized Bayesian reconstruction, the

Bayesian method proposed in [8] and a ℓ1 minimization using

a conjugate gradient optimization technique. Note that the

last method was combined with the algorithm in [15], which

avoids an empirical choice of the hyperparameter controlling

the sparsity term with respect to the data fidelity term.

First, the simulated US image has been cropped to a 32×
32 pixel block, as shown in Fig. 1(a). The magnitude of its

FT is shown in Fig. 1(b).
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Fig. 1. (a) Original 32 × 32 pixel block extracted from a

simulated ultrasound image and (b) Magnitude of its 2D FT.

The image has been decimated using a pattern adapted

to US imaging. The decimated image is shown in Fig. 2(a)

where only part of the columns contain measured samples, at

random positions. The remaining columns (RF lines) are not

sampled at all. In our example, the reconstructions have been

obtained by using 10% of the original images samples. This

means that roughly one RF line out of three (at random lateral

positions) has been sampled. For each sampled line, roughly

33% of the samples have been considered. Fig. 2(b) shows the

FT magnitude corresponding to the measured samples shown

in Fig. 2(a). We can observe that the proposed sampling re-

sults in a non localized noise in the Fourier domain.
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Fig. 2. (a) Random measured spatial samples using the sam-

pling pattern adapted to ultrasound imaging (only part of the

columns are randomly sampled) and (b) Magnitude of the FT

of the image in (a).

We show in Fig. 3 the reconstruction results obtained with

the three methods, as well as the three reconstructed FTs of

the image. We observe in Fig. 3(a) and 3(b) that the Bayesian

method presented in [8] totally fails to reconstruct the original

Fourier domain because the number of missing samples is too

large. The algorithm based on a reweighted ℓ1 minimization

by conjugate gradient and the proposedmethod provide better

reconstruction results depicted in Fig. 3(c)–3(f).

To evaluate quantitatively the differences between the dif-

ferent methods, we have computed the normalized mean

square errors (NRMSEs) between the actual and recon-

structed US images for different decimation factors. The

results displayed in Fig. 4 are in favor of the proposedmethod
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Fig. 3. Reconstructed ultrasound image and the magnitude of

the reconstructed Fourier domain using: (a) and (b) Bernoulli

Gaussian Bayesian approach presented in [8], (c) and (d)

reweighted conjugate gradient optimization, (e) and (f) the

proposed Bayesian optimization method.

(note that the results obtained with the method of [8] have not

been shown here in order to outline the differences between

the two other methods). It shows the evolution of the NRMSE

for both the proposed method and ℓ1 minimization by conju-

gate gradient, for several percentages of measured samples.

Obviously, for both methods, the error is smaller when the

number of spatial measured samples increases. However, we

observe that our method outperforms the classical one for all

the percentages. We also remark that the gap between the two

methods decreases with the number of measured samples.

With a crude Matlab implementation of the Bayesian al-

gorithm, out of memory errors occur when large images have

to be reconstructed. In order to show a result on the whole

128 × 128 simulated image (from which the 32 × 32 block

shown below was extracted), a block wise reconstruction has

been performed with the proposed method. Note that the ℓ1

conjugate gradient minimization can be performed without

problem on the entire US image. The true image, the mea-

sured samples and the two reconstructed images are shown

in Fig. 5. Despite its non optimal block wise implementation,
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Fig. 4. NRMSEs versus the proportion of measured sam-

ples for the reweighted ℓ1 method (red line) and the proposed

Bayesian method (black line)).

the proposed Bayesian method outperforms the reweighted ℓ1

minimization strategy. Note that the dark region in the image,

corresponding to the vessel, shows more reconstruction er-

rors. Indeed the vessel region is characterized by an absence

of scatterer therefore yielding a weak signal that is more dif-

ficult to be reconstructed than other parts of the image.
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Fig. 5. (a) Original US image, (b) measured samples, (c)

image reconstructed using reweighted conjugate gradient op-

timization and (d) image reconstructed using the proposed

Bayesian method.

5. CONCLUSION

This paper presented a new Bayesian ultrasound image recon-

struction technique. Contrary to the Bernoulli Gaussian prior

considered in [8], the proposed model managed to take ad-

vantage of the spatial connectivity between non-zero pixels

of the US image Fourier transform. The resulting algorithm

provided better reconstruction errors than the algorithm of the

[8] and the ℓ1 minimization technique of [7], especially for a

small amount of measured samples. These very encouraging

reconstructions promote the use of a new random sampling

scheme adapted to ultrasound imaging, allowing only part of

the RF lines to be acquired. Future works include the imple-

mentation of the proposed algorithm using graphics process-

ing units (GPU) to decrease the execution times that are still

prohibitive for large images.
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