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ABSTRACT
This paper deals with the problem of incomplete data i.e. data
with missing, unknown or unreliable values, in the polyadic
decomposition of a nonnegative three-way tensor. The main
advantage of the nonnegativity constraint is that the approx-
imation problem becomes well posed. To tackle simultane-
ously these two problems, we suggest the use of a weighted
least square cost function whose weights are gradually modi-
fied through the iterations. Moreover, the nonnegative nature
of the loading matrices is taken into account directly in the
problem parameterization. Then, the three gradient compo-
nents can be explicitly derived allowing to efficiently imple-
ment the CP decomposition using standard optimization algo-
rithms. In our case, we focus on the conjugate gradient and
the BFGS algorithms. Finally, the good behaviour of the pro-
posed approaches and their robustness versus possible model
errors is illustrated through computer simulations in the con-
text of data analysis.

Index Terms— Data analysis; Conjugate gradient; Can-
Decomp; Parafac; Canonical Polyadic (CP); tensor decompo-
sition

1. INTRODUCTION

In many applications where multi-way arrays are considered,
nonnegative data need to be handled, for example in hyper-
spectral imaging [16], in fluorescence analysis [15], in com-
puter vision or in biomedical signal processing. Some solu-
tions have been proposed in the literature to take into account
this constraint see e.g. [3, 4, 10, 13, 14]. In addition, tak-
ing into account the nonnegativity nature of the data turns the
decomposition problem into a well-posed problem [8]. On
the other hand, during the acquisition process, it may hap-
pen that some measures are missing or unreliable, due to a
sensor problem for example, so that data are incomplete. So-
lutions have been suggested to overcome this other problem
too [1, 12]. In this work, we focus on nonnegative 3-way ar-
rays with possible missing data. In [13, 14], we have already
proposed two different approaches to take into account the
nonnegativity constraint. Here, we present new algorithms

whose aim is to handle the possibility of missing values too.
Based on the use of a modified weighted least square cost
function (whose weights will vary through the iterations) and
a particular parameterization of the loading matrices, gradient
components can be explicitly calculated. Then, standard opti-
mization algorithms can be executed. We subsequently focus
on a Quasi-Newton (Broyden-Fletcher-Goldfarb-Shanno im-
plementation - BFGS) and the conjugate gradient algorithms.
Concerning the choice of the stepsize, we suggest to use either
an Enhanced Line Search (ELS) or a backtracking method.
Computer simulations illustrate the algorithms in the context
of data analysis; they are compared with the method intro-
duced in [1].

2. PROBLEM STATEMENT

A tensor can be represented by a N -way array in a chosen
basis. We focus on third-order tensors, say X ∈ RI×J×K .
Each entry of X is denoted by xijk. Tensors always admit the
following trilinear decomposition, also known as the triadic
decomposition [6] of X into a sum of rank-1 tensors:

xijk =

F∑
f=1

aifbjfckf , (1)

where the three matrices A = (aif ) = [a1,a2, . . . ,aF ] ∈
RI×F , B = (bjf ) = [b1,b2, . . . ,bF ] ∈ RJ×F , C =
(ckf ) = [c1, c2, . . . , cF ] ∈ RK×F are the so-called loading
matrices, whose F columns are the loading factors. F stands
for a large enough integer. The minimum F that can be
found such that the above equality remains valid is called the
tensor rank and the decomposition is then named CP, which
stands for Canonical Polyadic (or for Candecomp/Parafac).
We shall also assume the more compact notation of (1):
X = JA,B,CK where JA,B,CK =

∑F
f=1 af ◦ bf ◦ cf and

“◦” represents an outer product of vectors. Three equivalent
matrix writings of (1) also exist:

XI,KJ
(1) = A(C�B)T , (2)

XJ,KI
(2) = B(C�A)T , (3)

XK,JI
(3) = C(B�A)T , (4)
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where XI,KJ
(1) , XJ,KI

(2) and XK,JI
(3) are I × KJ , J × KI and

K × JI matrices obtained by unfolding the tensor X in the
first, second and third modes, respectively. Operator� stands
for the Khatri-Rao (column-wise Kronecker) product.

2.1. CP decomposition of 3-way arrays via ALS

A classical way to determine the three loading matrices con-
sists in minimizing the following cost function with respect to
three loading matrices, alternately:

H(A,B,C) = ‖XI,KJ
(1) −A(C�B)T ‖2F (5)

= ‖XJ,KI
(2) −B(C�A)T ‖2F = ‖XK,JI

(3) −C(B�A)T ‖2F

where ‖.‖F is the Frobenius norm. When performing the CP
decomposition, the tensor rank F is assumed to be known and
must therefore have been estimated first.

2.2. Nonnegative 3-way array factorization

Unconstrained CP decomposition leads to an ill-posed prob-
lem and the estimation of the loading matrices can become
unstable. The symptoms of degenerate array [9, 5] occur
when collinear columns with opposite signs are calculated, in
such a way that their contributions cancel each other. More-
over, it is wise in some applications to consider the nonnega-
tive nature of the data that are processed. Spectra and images
are the most common examples.
Several works have been dedicated to that problem and solu-
tions have been found to take into account the nonnegativity
constraint [3, 4, 10, 13, 14]. In [13], the way to constrain
the loading matrices to have nonnegative entries is via their
parameterization, without modifying the cost function. This
kind of parameterization has been previously used in nonneg-
ative matrix factorization (NMF) problems [4, 7]. The matrix
loadings are defined as A′ = A�A and the same for B′ and
C′, where � is the Hadamard entry-wise multiplication for
two matrices with the same dimensions, i.e. (T�T)ij = t2ij .
This leads to the following cost function, where δ(1), δ(2) and
δ(3) simplify the expressions:

F(A,B,C) = H(A � A,B � B,C � C) (6)

= ‖XI,KJ
(1) − (A � A) [(C � C)� (B � B)]T ‖2F = ‖δ(1)‖2F

= ‖XJ,KI
(2) − (B � B) [(C � C)� (A � A)]T ‖2F = ‖δ(2)‖2F

= ‖XK,JI
(3) − (C � C) [(B � B)� (A � A)]T ‖2F = ‖δ(3)‖2F

Considering a function I depending on three matrices X, Y,
Z, its matrix gradient components are denoted by
∇XI(X,Y,Z) = ∂I(X,Y,Z)/∂X, where ∂ · /∂X de-
notes the matrix of partial derivatives with respect to the
entries of X; the notation being similar for Y and Z. We
have given in [13] the expressions of these matrix gradients:

∇AF(A,B,C) = 4A �
(
(−δ(1)) [(C � C)� (B � B)]

)
,

∇BF(A,B,C) = 4B �
(
(−δ(2))[(C � C)� (A � A)]

)
,

∇CF(A,B,C) = 4C �
(
(−δ(3))[(B � B)� (A � A)]

)
. (7)

3. HOW TO DEAL WITH MISSING DATA ?

3.1. A weighted cost function

As mentioned before, tensors resulting from experimental
measures can lack some values. Yet, it is interesting to still be
able to perform the decomposition ignoring those values. The
previous works on this subject have consisted in introducing
a tensor of weights, say W with the same size as the data
tensor (W ∈ R+I×J×K) and whose entries equal either 0
when a value is missing or 1 in the other case [1][12]. In our
case, W entries are no more assumed to be binary. Denoting
by WI,KJ

(1) the unfolding of the tensor W in the first mode,
the cost function expressed in the first mode is now given by:

G(A,B,C)

= ‖WI,KJ
(1) �

(
XI,KJ

(1) − (A�A)((C�C)� (B�B))T
)
‖2F

= ‖WI,KJ
(1) � δ(1)‖2F = ‖β(1)‖2F (8)

We have the same kind of expression for the two other modes:

G(A,B,C) = ‖WJ,KI
(2) � δ(2)‖2F = ‖β(2)‖2F (9)

= ‖WK,JI
(3) � δ(3)‖2F = ‖β(3)‖2F (10)

Once again, β(i), for i = 1, ..., 3 are introduced to shorten the
expressions. Using ‖A‖2F = trace{ATA} = 〈A,A〉, where
〈.〉 is the Frobenius scalar product, (8) is rewritten:

〈β(1),β(1)〉 = trace{βT
(1)β(1)} =

trace

{[
WI,KJ

(1) �
(
XI,KJ

(1) − (A � A)((C � C)� (B � B))T
)]T

[
WI,KJ

(1) �
(
XI,KJ

(1) − (A � A)((C � C)� (B � B))T
)]}

The differential dG of G has to be calculated to determine the
three gradient components: the I×F matrix∇AG, the J×F
matrix ∇BG and the K × F matrix ∇CG. The detail of the
calculation is given in Appendix. We finally find that:

dG(A,B,C)

= 〈4
[
A�

(
(−β(1) �WI,KJ

(1) )[(C�C)� (B�B)]
)]
, dA〉

+ 〈4
[
B�

(
(−β(2) �WJ,KI

(2) )[(C�C)� (A�A)]
)]
, dB〉

+ 〈4
[
C�

(
(−β(3) �WK,JI

(3) )[(B�B)� (A�A)]
)]
, dC〉

Finally, it leads to the three ensuing gradient matrices:

∇AG(A,B,C) = 4A �
[
(−β(1) � WI,KJ

(1) ) ((C � C)� (B � B))
]

∇BG(A,B,C) = 4B �
[
(−β(2) � WJ,KI

(2) ) ((C � C)� (A � A))
]

∇CG(A,B,C) = 4C �
[
(−β(3) � WK,JI

(3) ) ((B � B)� (A � A))
]

(11)
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4. OPTIMIZATION ALGORITHMS

4.1. The BFGS Quasi-Newton algorithm

First define a (I + J +K)F × 1 vector x containing all the
loading matrices stacked into one single column. We also
define a vector g of the same size containing the three gradient
matrices arranged in the same way:

x(k)=

vec{A(k)}
vec{B(k)}
vec{C(k)}

, g(k)=

vec{∇AG(A(k),B(k),C(k))}
vec{∇BG(A(k),B(k),C(k))}
vec{∇CG(A(k),B(k),C(k))}


where k represents the iteration, k ∈ {1, . . . , n}, and n the
total number of iterations, and operator vec(.) stacks the
columns of a matrix into a column vector.
The BFGS algorithm follows the adaptation rule below:{

x(k+1) = x(k) + µ(k)d(k)

d(k+1) = −(H(k))−1g(k),
(12)

where the (I + J +K)F × (I + J +K)F matrix H is the
Hessian and µ(k) is the stepsize. The inverse of the Hessian
H−1 can be directly updated using the inversion lemma and
defining ρ = 1

(∆g(k))T ∆x(k) :

∆x(k) = x(k+1) − x(k)

∆g(k) = g(k+1) − g(k)

(H(k+1))−1 = (H(k))−1

+ρ
[
1 + ρ(∆g(k))T (H(k))−1∆g(k)

]
∆x(k)(∆x(k))T

−ρ∆x(k)(∆g(k))T (H(k))−1 − ρ(H(k))−1∆g(k)(∆x(k))T

(13)

If the Hessian is initialized to the identity matrix, then the
BFGS update theoretically guarantees positive definiteness.
However, it is known that the Hessian rank is equal to the
number of free parameters, i.e. to (I + J +K − 2)F . Hence
the above update will become more ill conditioned as more
iterations are run.

4.2. The conjugate gradient (CG) algorithm

The non linear CG algorithm follows the adaptation rule:{
x(k+1) = x(k) + µ(k)d(k)

d(k+1) = −g(k+1) + β(k)d(k) (14)

Two expressions for β are classically used: the Fletcher-
Reeves (βFR) and the Polak-Ribiere (βPR) formula [11]:

β
(k+1)
FR =

g(k+1)Tg(k+1)

g(k)T ,g(k)
(15)

β
(k+1)
PR =

g(k+1)T (g(k+1) − g(k))

g(k)Tg(k)
. (16)

Finally, as noticed in [11], if we reinitialize a conjugate gra-
dient method by setting d(i) = −g(i), from time to time

(in our case, we have chosen to perform this “restart” every
(I + J + K)F iterations which corresponds to the number
of unknowns), we might get better performance than by con-
structing d(i) by one of the standard formulaes, i.e. combin-
ing (14) and (15) or (14) and (16) at each iteration.

4.3. The stepsize issue

The stepsize µ(k) can be found by a global search with ELS,
or an approximation by a line search method like backtrack-
ing [2, 13]. We have opted for the former: we look for the
value of µ that minimizes the polynomial G(PA�PA,PB�
PB,PC � PC) where PA = A(k) + µd

(k)
A , PB = B(k) +

µd
(k)
B and PC = C(k) + µd

(k)
C .

5. A VARYING WEIGHT (VW) ALGORITHM

Rather than letting the tensor of weights fixed through the iter-
ations like in [1], we update this tensor and gradually estimate
missing values of tensor X through the iterations.
ALGORITHM. Start with a given tensor X ∈ R+I×J×K with
missing data, and a tensor of weights W with binary entries
at the beginning (small constant ε instead of 0 if the value
is missing and 1 if the value exists). Then do as long as the
stopping criterion is true:

1. Compute the gradient matrices thanks to Eq. (11).
Then, they can be used in any of the descent algorithms
(cf. Section 4) to determine the descent direction.

2. Update the loading matrices A, B, C.

3. The missing values of X are corrected by interpolation.
First, reconstruct tensor X from loading matrices; this
yields tensor U. If xijk exists, do nothing. Otherwise,
compute an averaged value with closest neighbors (six
if present, otherwise fewer).

4. If wijk 6= 1, slightly increase its value by a small con-
stant, say α = 10−3. By this way, the weight of the
initially missing data is progressively increased while
the tensor is reconstructed and the loading matrices are
estimated. But, since this reconstruction is not per-
fect, we define an upper bound M < 1 (for example
M = 0.2), such that for each wijk linked to a missing
value, wijk ≤M .

5. Check whether the algorithm has converged. If so, stop,
otherwise, continue to the next iteration.

6. COMPUTER SIMULATIONS

6.1. The data mining context

When a water solution containing organic matter is enlight-
ened by an excitation wavelength, it produces two effects:
Raman and Rayleigh diffusions and fluorescence. The latter
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is characterized by the wavelength of the emission. For low
concentrations, the Beer-Lambert law describes the relation
between the intensity of fluorescence and these wavelengths:

I(λe, λf ) = I0 ε(λe) γ(λf ) c, (17)

where I0 is a constant, ε is the relative excitation spectrum, γ
is the relative emission spectrum, and c the concentration of
the component. If the solution contains several mixed com-
ponents, the relation above is slightly modified. The fluores-
cence intensity becomes a combination of the fluorescence
intensity of the different components and reads:

I(λe, λf , k) = I0
∑
l

εl(λe)γl(λf )ckl, (18)

where l is the number of components, k is the number of sam-
ples, and ckl is the concentration of the component l in the
sample k. The analogy between (1) and (18) is straightfor-
ward. Indeed, thanks to the unicity of the CP decomposition,
we can establish that parameter l corresponds to the tensor
rank F , factor matrix aif matches to εl(λe), factor matrix bjf
matches to γl(λf ), and factor matrix ckf matches to ckl. So, it
is possible to recover the two spectra belonging to each com-
ponent, and their associated concentrations.

Fig. 1. Exact model (F = 4), the 4 estimated fluorescence
emission-excitation images using: Left: the CG algorithm with non-
negativity constraint (no missing data). Right: the VW algorithm
(30% missing data).

6.2. Numerical results

A tensors T has been simulated, using F = 4 components
whose 47 × 71 FEEM - Fluorescence Excitation Emission
Matrices (aibT

i , ∀i = 1, . . . , 4) were similar to the ones dis-
played in [13] (or on the left of Fig. 1). A 15 × 4 random
nonnegative matrix C has been used. A certain % of the data
have been randomly replaced by Not A Number (NaN). To
that aim the coordinates (i, j, k) of those points have been
chosen according to an uniform law. On the right of Fig. 1,
we have displayed the four estimated fluorescence emission-
excitation images using the CG algorithm with nonnegativity
constraint and taking into account missing data. The proposed
VW algorithm was used, consideringM = 0.1 and α = 10−5

and in this case 30% of the data were missing. On the left of
the same figure, we provide the results obtained with the CG
with nonnegativity constraint [13]. Results are really good:
performances are nearly the same with 30% of missing data.

Fig. 2. 80% of missing data. Mixture of 4 factors, assuming F = 6.
Top left: Estimated fluorescence emission-excitation images using
the algorithm suggested in [1] (no nonnegativity contraint). Top
right: CG algorithm with nonnegativity constraint and taking into
account missing data with fixed weight. Bottom left: VW algorithm.
Color maps: CP-WOPT (left); CG and VW (right).

6.3. Robustness versus model errors

The rank is now overestimated. We still consider F = 4 com-
ponents, but, since F is generally unknown, we try to perform
the CP decomposition with the assumption that F̂ = 6. Here,
we chose M = 0.15 and the same α = 10−5 . Ideally, un-
necessary components should be equal to 0. As it can be ob-
served in Fig. 2, it is more likely the case using the improved
method that we have introduced: only small residues are visi-
ble on this set of images. The same method with fixed weights
and without reconstruction tends to estimate 6 components in-
stead of 4 and the fourth one is badly estimated. Finally, the

Fig. 3. 80% of missing data, in the overestimated case (F is as-
sumed equal to 6 when F = 4). A comparison of the three methods:
left: evolution of E1 versus iterations; right: the same with E2.
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CP-WOPT method introduced in [1] cannot restore the cor-
rect FEEMs since it allows negative values. Now, to be able
to compare the obtained results, two error indices are intro-
duced. The first one is based on the error between observed
and reconstructed tensors: E1dB = 10log10(‖T − T̂ )‖2F ),
where T̂ =

∑F
f=1 âf ◦ b̂f ◦ ĉf and â, b̂ and ĉ are the esti-

mated factors. The best results should be reached when E1dB

is minimal and close to −∞. The second performance index
(which cannot be used on experimental data) is based on the
error between the FEEM of actual and estimated components:
E2dB = 10log10(

∑F
i=1 ‖aibT

i − âib̂
T
i )‖F ) . But first, to

compare the images corresponding to the same organic com-
ponent, actual and estimated FEEM’s have to be normalized
and then sorted. In Fig. 3, we observe that, despite the fact
that E1 is really low with the CP-WOPT method, the FEEMs
of the organic components are badly estimated (really high
E2). On the contrary, with our two suggested methods, E1 is
more important but E2 tends to be much smaller. Note that
the greedy criterion defined in [5] and involving the 3 matrix
factors would be too computationally heavy; this is why our
criterion involves only A and B.

7. CONCLUSION

We have described a novel algorithm to handle missing data
in the context of nonnegative three-way tensors factorization.
Two optimization algorithms have been used. Their ELS ver-
sions have been considered. Computer simulations have been
provided to enlighten the effectiveness and the robustness of
the proposed approach (even in really difficult cases where
more than 50% of the data were missing). The method has
been compared with other existing approaches.

Appendix A
By defining M1 = (C�C)� (B�B), M2 = (C�C)�
(A�A) and M3 = (B�B)� (A�A), we can rewrite Eq.
(8) and then calculate its differential:

dG(A,B,C) = 2trace{βT
(1)dβ(1)}+ 2trace{βT

(2)dβ(2)}

+ 2trace{βT
(3)dβ(3)}

= 2trace{βT
(1)d[WI,KJ

(1) � (XI,KJ
(1) − (A � A)MT

1 )]}

+ 2trace{βT
(2)d[WJ,KI

(2) � (XJ,KI
(2) − (B � B)MT

2 )]}

+ 2trace{βT
(3)d[WK,JI

(3) � (XK,JI
(3) − (C � C)MT

3 )]}

= 4trace{−βT
(1)

[
WI,KJ

(1) �
(

(A � dA)MT
1

)]
}

+ 4trace{−βT
(2)

[
WJ,KI

(2) �
(

(B � dB)MT
2

)]
}

+ 4trace{−βT
(3)

[
WK,JI

(3) �
(

(C � dC)MT
3

)]
}

= 4trace{−βT
(1) � WI,KJ

(1)

T
(A � dA)MT

1 }

+ 4trace{−βT
(2) � WJ,KI

(2)

T
(B � dB)MT

2 }

+ 4trace{−βT
(3) � WK,JI

(3)

T
(C � dC)MT

3 }

= 4trace{MT
1 (−β(1) � WI,KJ

(1) )T (A � dA)}

+ 4trace{MT
2 (−β(2) � WJ,KI

(2) )T (B � dB)}

+ 4trace{MT
3 (−β(3) � WK,JI

(3) )T (C � dC)}

= 4trace{MT
1 (−β(1) � WI,KJ

(1) )T � AT dA)}

+ 4trace{MT
2 (−β(2) � WJ,KI

(2) )T � BT dB)}

+ 4trace{MT
3 (−β(3) � WK,JI

(3) )T � CT dC)}

= 〈4
[
A �

(
(−β(1) � WI,KJ

(1) )M1

)]
, dA〉

+ 〈4
[
B �

(
(−β(2) � WJ,KI

(2) )M2

)]
, dB〉

+ 〈4
[
C �

(
(−β(3) � WK,JI

(3) )M3

)]
, dC〉
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