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ABSTRACT

In this paper, we propose a novel nonlinear technique for
multi-sensor classification, which relies on sparsely repre-
senting a test sample in terms of all the training samples
in a feature space induced by a kernel function. Our ap-
proach simultaneously takes into account the correlations as
well as the complementary information between the homo-
geneous/heterogeneous sensors, while also considering the
joint sparsity within each sensor’s multiple observations in
the feature space. This approach can be seen as a generalized
model for representing a multi-task and multivariate Lasso in
the feature space, where the data from all the sensors repre-
senting the same physical events are jointly represented by
a sparse linear combination of the training data. Extensive
experiments are conducted on real data sets and the results
are compared with the conventional discriminative classifiers
to verify the effectiveness of the proposed method in the ap-
plication of automatic border patrol, where it is required to
discriminate between human and animal footsteps.

1. INTRODUCTION

Multi-sensor fusion have received considerable amount of at-
tentions over the past few years for both military and non-
military tasks (e.g. [1]). A particular interest in multi-sensor
fusion is classification, where the ultimate question is how to
take advantage of related information from different sources
(tasks) measured from the same physical event in order to
achieve an improvement in the classification performance. A
variety of approaches have been proposed in the literature to
answer this question (e.g. [2], [3]). These methods mostly
fall into two categories: decision in - decision out (DI-DO)
and feature in - feature out (FI-FO) [1]. In [2], the authors in-
vestigated the DI-DO method on vehicle classification prob-
lem using data collected from acoustic and seismic sensors.
They proposed to perform local classification (decision) for
each sensor signal by a conventional method such as the Sup-
port Vector Machine (SVM). These local decisions are then
incorporated via a Maximum A Posterior (MAP) estimator to
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make the final classification decision, thus named the DI-DO
method. In [3], the FI-FO method is studied for vehicle clas-
sification using both visual and acoustic sensors. They pro-
posed a method to extract temporal gait patterns from both
sensor signals in order to use them as inputs to an SVM clas-
sifier.

In this paper, we study a non-linear multi-sensor clas-
sification problem in a kernel induced feature space, where
we aim to perform discrimination between human and non-
human footsteps. Our experimental setup is as follows: the
footstep events on the field are recorded by a set of four
sensors consisting of two acoustic and two seismic sensors
simultaneously. Our ultimate goal is to detect whether the
events involve human or human and animal footsteps. We
investigate a sparse signal representation technique which
has been successfully employed in a large number of discrim-
inative applications (e.g. [4], [5]). We propose in this paper
a multivariate kernel sparse representation for classification
(MV-kerSRC) which extends the conventional multivariate
sparse representation method (MV-SRC) to the kernel in-
duced feature space. Various extensions of the MV-kerSRC
are also proposed in this paper to effectively incorporate
information from different sensors, including multitask MV-
kerSRC (MTMV-kerSRC) and MV-kerSRC with composite
kernels [6]. The MTMV-kerSRC imposes joint-sparsity con-
straints both within each task (for multiple observations) and
across multiple tasks, while the MV-kerSRC with composite
kernels efficiently combines kernels dedicated for each sensor
via stack or summation operations as shown in Section 3.2.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces our proposed MV-KerSRC method. We
present in Section 3 various extensions of the MV-kerSRC,
which include MTMV-kerSRC and MV-kerSRC with com-
posite kernels. Extensive experiments are shown in Section 4
and conclusions are drawn in Section 5.

2. KERNEL SPARSE REPRESENTATION

a) Sparse representation: Assume we are given a dictio-
nary representing C distinct classes X = [X1, X3, ..., X¢] €
R™*P, where the j-th class sub-dictionary X ; has p; train-
ing samples {x; . }r=1,...p;- To label a test sample, it is of-
ten assumed y € R"™ can be represented by a subset of the



training samples in X. Mathematically, y is written as y =
[X1,Xa,....,XcJw = Xw where w € R? is the unknown co-
efficient vector. The above assumption implies that only the
entries of w that are associated with the class of the test sam-
ple y are non-zeros, and thus, w is the sparse vector. Taking
this prior into account, many methods have been proposed to
find the coefficient vector w efficiently such as ¢;-norm min-
imization [7].

b) Kernel sparse representation: Sparse representation has
been widely known as an efficient method for classification
when the above assumption is valid. However, in various
practical applications, this assumption might not hold due to
the complex structure of the dataset. In this paper, we show
empirically that kernel methods can be a solution to overcome
this issue. In fact, classifiers such as SVM have been exten-
sively validated to perform better in the kernel domain. The
reason is that if the classes in the dataset are not linearly sepa-
rable, then the kernel methods can be used to project the data
onto a feature space, in which the classes become linearly
separable [8]. In this paper, we extend the linear sparse repre-
sentation to the kernel domain. Denote k£ : R™ x R" — R as
the kernel function, defined as the inner product x(x;,x;) =
(p(x;), o(x;)) , where ¢ :  — ¢(x) is an implicit mapping
that maps the vector z onto a higher dimensional space, pos-
sibly infinite. A commonly used kernel is the Radial Basis
Function (RBF) kernel x(z;,x;) = exp(— |lz; — :EJ||§ /o?)
with o used to control the width of the RBF [8].

Let y € R™ be an unlabeled test sample of interest and
o(y) be its representation in the feature space. The kernel
sparse representation of the test sample y in terms of the train-
ing samples {z;}”_; can be formulated as

where columns of the matrix ®(X) are the representations
of the training samples in the feature space and the vector
w € RP is assumed to be sparse. This equation implies that
in the feature space, the test sample y can be represented as
the sparse linear combination of the training samples.

¢) Multivariate kernel sparse representation (MV-kerSRC):

Joint sparse representation [4] can also be naturally extended
to the feature space. LetY = [yi,¥2,...,y4] € R"*? be
a set of d observations representing multiple measurements

obtained by a sensor and ®(Y) = [¢(y1),0(y2), ..., d(¥a)]
be their representation in the feature space. We have

B(Y) = [(X)wy, ®(X)ws, ..., (X )wy] = X)W, (2)

where W € RP*? is the unknown coefficient matrix. In
the joint kernel sparse representation, the sparse coefficient
vectors {wi}i=17,,,7d share the same support. This row-sparse
coefficient matrix W can be recovered by the following
optimization, which we call multivariate kernel Lasso (MV-
kerLasso)

min [8(Y) — @X)WI[ + AW, O
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where the ¢;/{,-norm imposed on the matrix W promotes
the shared sparse pattern across multiple columns of W':
w1l , 250 [|w;l|, where w;’s are rows of W. The op-
timization (3) is implicitly solved in the feature space, which
can be efficiently done using the kernel trick. That means, we
do not need to explicitly express the data in the feature space,
rather we only evaluate the kernel functions at the training
points. In fact, by reformulating (3) and replacing each dot
product by a kernel function, we can write (3) as

né[i/n (tr(W'KxxW) —2tr(KxyW)) + X [W||, . 4

where K xx € RP*P is the kernel matrix whose (i, j) entry
is k(x;,x;), and kxy € RP? is the matrix whose i-th entry
is k(x;,y;). The above optimization is a quadratic convex
programming due to the positive definiteness of the kernel
matrix K xx, thus it can be optimized via several existing
algorithms in the literature (e.g. [9]).

Once the matrix W is obtained, the class label of the test
sample Y is determined by computing the error residual be-
tween the test sample and it approximation from each class in
the feature space. The label is given to the class with smallest
residual

re(¥) = |[2(¥) - $XW. |

T T /\ 1/2
= (tr(Kyy) —2 tr(WC KXUY) + tI‘(Wc KXCXCWC)) ,

where W .. is the coefficient matrix of W associated with c-th
class.

3. EXPLOIT INFORMATION FROM DIFFERENT
SENSORS IN KERNEL SPARSE REPRESENTATION

In this section, we briefly describe our experimental setup and
explain why we need to do more than just joint kernel sparse
representation. Our database is from the Army Research Lab-
oratory which conducted footstep data collection using four
sensors including two acoustic and two seismic sensors. The
goal is to discriminate between human and human-animal
footsteps. In our experimental setup, we divide the signal (ei-
ther acoustic or seismic signal) into ten overlapping segments
(multiple observations) to capture local signal information.
A natural question arises as whether we can improve the
classification performance by incorporating information from
all the sensors simultaneously. In this section, we give an
affirmative answer by proposing two methods to exploit the
complementary information between the different sensors.
We experimentally show that the methods that exploit the
coupling information from all the sensors potentially improve
the classification accuracy.

Throughout this section, we use similar notations to define
test samples and its dictionaries. Let Y € R™*? and Y* €
R™s*? represent the test samples associated with the acoustic



and seismic signals, respectively. Each Y ® or Y'® consists of d
test segments. In addition, let X = [X ¢, ..., X%] € R"%*P
and X° = [X73,...,X{] € R™*P be the training dictionaries
associated with acoustic and seismic signals, respectively. We
also note that the segment dimensions n, and n, could be
different to emphasize the flexibility of our approach.

3.1. Kernel sparse representation via multi-task multi-
variate kernel Lasso

As in the joint kernel sparse representation, the test samples
from each sensor can be represented by their training samples
Y =X )W and Y’ =X )W?,
where W and W# are row-sparse coefficient matrices asso-
ciated with the acoustic and seismic signals, respectively. We
recall that the coefficient matrix can be seen as the discrimi-
native feature for classification. Thus, by incorporating infor-
mation from both sensors, we propose to solve W and W*

simultaneously via the following convex optimization

Gnin ([2(re) — (X )W*7

&)

@) — @XW) + AW W, -
It is clear from (5) that the information from both sensors
are integrated into the sparse classification via the shared
sparsity pattern of the matrices W and W#. This optimiza-
tion is called multi-task multivariate kernel Lasso (MTMV-
KerLasso). It is worth noticing that though in this section
we investigate the multi-task multivariate kernel sparse repre-
sentation for classification (MTMV-KerSRC) with only two
different sensors, there is of course nothing preventing us
from generalizing the problem to multiple sensors. Gener-
ally, if there are D sensors recording the same event, we will
incorporate sensors’ information by solving

D
min Y [@(Y") - 8XOW' [ + AW, ©
=1

where Y is the test sample from the i-th sensor and X* is
the i-th dictionary associated with the i-th sensor; and W' €
RP* P4 ig the big matrix consisting of matrices {Wi},—1 _ p:
W' = W' ... ,WP]. Again, (6) can be reformulated to ac-
count for kernel matrices

D
H&}y; (’CI“(Wz KyxixW") — 2tr<KXiinz>)

AWl - D

This optimization can be efficiently solved via the alternating
direction method. More detailed description of the algorithm
can be found in [10].
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3.2. Kernel sparse representation via composite kernels

Another way to integrate information between different sen-
sors is through a composite kernel [6], which efficiently com-
bines kernels dedicated for each sensor. In this paper, we pro-
pose to combine kernels dedicated for acoustic and seismic
sensors in an efficient manner and use the new kernel for our
multivariate kernel Lasso optimization in (4). Let  and x
be segment samples extracted from acoustic and seismic sen-
sor signals, respectively. Various kernel combinations include

Stacking kernel: Denote x; as a new segment sample ob-
tained by stacking two corresponding samples i and z; in
the original domain to obtain a longer vector: x; = [z¢;z?].
The stacking kernel is defined as k(x;, x;) = (d(x;), ¢(x;)).

Weighted summation kernel: By concatenating the two
corresponding samples ¢ and z; in the feature space as
d(x;) = [Br1d(x}); f2g(x7)], we have the new kernel

K(Zi, i) = (B(x:), p(x:)) = auk(z], x]) + azk(z], 7)),

where 5, and (35 are positive real-valued parameters, which
are freely defined by user to control the weights associated
with each kernel.

4. EXPERIMENTAL RESULTS

We use a set of four sensors consisting of two acoustic and
two seismic sensors to record footstep data over two days.
The test subjects are human and human leading animal. A
total of 132 round-trip runs were conducted in two days in-
cluding 60 runs for the first day and another 72 runs for the
second day. The collected footstep data sets, named DEC09
and DEC10, corresponds to two different days December 09
and 10, where DECQ9 consists of 30 human and 30 human-
animal signals and DEC10 consists of 36 human and 36
human-animal signals. More detailed experimental setup is
described in [10].

4.1. Two-class problem

First, we demonstrate the classification effectiveness of our
proposed MV-kerSRC method presented in Section 2 on the
DECO09 and DEC10 data sets. In particular, we carry exper-
iments to perform discrimination tasks between the human
and human-animal footsteps. In this experiment, we use the
DECAQ9 data for training and the DEC10 data for testing. The
experiments are performed on each sensor separately, where
for each sensor, the corresponding training dictionary X is
constructed from all the cepstral feature segments extracted
from the 60 training signals. In our experiments, ten over-
lapping segments (d=10) are taken from each individual sen-
sor signal to capture local signal information. Therefore, the
training dictionary X is of size 500 x 600 and the associated
observation Y is of size 500 x 10, where n = 500 is the
feature dimension.



Table 1. Classification accuracy (%) for the two-class prob-

lem with training samples taken from DECQ09.

Table 2. Classification accuracy (%) for the two-class prob-

lem with training samples taken from DEC10.

Methods H HA OA Methods H HA OA
MV-SRC acoustic sensor 1 88.89 | 41.67 | 65.28 MV-SRC acoustic sensor 1 76.67 | 46.67 | 61.67
MV-kerSRC acoustic sensor 1 88.89 | 100.00 | 94.44 MV-kerSRC acoustic sensor 1 100 | 90.00 | 95.00
MV-SRC acoustic sensor 2 80.55 | 50.00 | 65.28 MV-SRC acoustic sensor 2 76.67 | 53.33 | 65.00
MV-kerSRC acoustic sensor 2 94.44 | 97.22 | 95.83 MV-kerSRC acoustic sensor 2 100 | 76.67 | 88.33
MV-SRC seismic sensor 1 66.67 | 66.67 | 66.67 MV-SRC seismic sensor 1 50.00 | 66.67 | 58.33
MV-kerSRC seismic 1 80.56 | 91.67 | 86.11 MV-kerSRC seismic 1 100 | 86.67 | 93.33
MV-SRC seismic sensor 2 66.67 | 61.11 | 63.89 MV-SRC seismic sensor 2 56.67 | 66.67 | 61.67
MV-kerSRC seismic sensor 2 91.66 | 72.22 | 81.94 MV-kerSRC seismic sensor 2 96.67 | 86.67 | 91.67
MV-kerSRC with stacking kernel 100 94.44 | 97.22  MV-kerSRC with stacking kernel 100 | 93.33 | 96.67
MV-kerSRC with weighted kernel || 97.22 | 97.22 | 97.22 MV-kerSRC with weighted kernel 100 | 93.33 | 96.67
MTMV-kerSRC 100 97.22 | 98.61 MTMV-kerSRC 100 | 96.67 | 98.34

For each sensor, we solve the joint sparse recovery prob-
lem (4) in the original and kernel domains for each test sam-
ple, and then determine the class label by the minimal error
residual. Values of the regularization parameter \ in these op-
timizations are selected via the cross-validation process. The
classification performance is summarized in the first part of
Table 1, where the first column refers to the methods and
the sensor data used in our experiments, which include MV-
SRC and MV-kerSRC for four sensors separately. The second
and third columns describe the classification accuracy of hu-
man (H) and human-animal footsteps (HA) classification per-
formance, and the last column is the overall accuracy (OA),
which is simply computed by taking the average of the H and
HA. In all our experiments, we employ the classical Gaus-
sian kernel with parameter o = 2% which we find to archieve
the best performance for MV-kerSRC. As one can clearly see
from Table 1, the MV-kerSRC method significantly outper-
forms MV-SRC counterpart for all the test sets. Specifically,
the performance gain is roughly 10% — 15% for all four sensor
data.

The performance consistency of the proposed MV-kerSRC
is also validated on the other dataset in which we now use
DECI10 for training and DECO09 for testing. Accordingly, we
now have 72 training and 60 testing samples, respectively.
The result is reported in the first part of Table 2. Again, it
is clear from this table that the joint sparse representation
method operates significantly better in the kernel feature
space.

4.2. Combining different sensors

In this section, we discuss various extensions of the MV-
kerSRC method in order to incorporate the coupling informa-
tion between the different sensors. We perform experiments
with the methods we proposed in Section 3 and show that
combining information from both acoustic and seismic sen-
sors will improve the classification performance substantially.
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In particularly, we solve the optimizations (4) and (6) with
different composite kernels and assign class label by com-
puting residuals once the coefficient matrix is obtained. For
the weighted sum kernels, the weights associated with these
kernels are set to one. This implies that acoustic and seismic
kernels contribute equally for classification. In addition, for
these two kernels, the sample z{ in Section 3.2 is set as a
concatenation of the two acoustic samples ¢ = [z]'; 2]
where z7* and z* are samples from the first and second
acoustic sensors, respectively. Similar construction is also
applied for the sample z{ as &} = [z;';;?]. Classification
performances of these methods are shown in the second part
of Table 1. As one can see, by exploiting the complimentary
information across sensors via the joint sparse representation
method, the MTMV-kerSRC and MV-kerSRC with different
composite kernels is roughly 4% improvement over the MV-
kerSRC, which makes the overall classification accuracy of
the MTMV-kerSRC up to nearly 99%.

To validate the efficiency of our proposed approach, we
rerun the experiments where we use DECI10 for training and
DECO09 for testing. As can be observed in the second part of
Table 2, similar phenomenon occurs where MTVT-kerSRC
outperforms all other methods.

4.3. Comparing with other methods

Our next experiment compares the proposed MTM V-kerSRC
and MV-kerSRC with composite kernel with the current state-
of-the-art classifiers such as the (kernel) sparse logistic re-
gression (SLR) [11], SVM, and kernel SVM [8]. In the fol-
lowing experiments, all four sensors are used. In the conven-
tional classifiers such as SVM and SLR, we incorporate in-
formation from multiple sensors by concatenating all D = 4
sensors’ training dictionaries to form an elongated dictionary
X. € RP™ P Atoms of the new dictionary X . are consid-
ered as the training samples, which are then used to train the
SVM and SLR classifiers. These classifiers are then used to



Table 3. Classification accuracy (%) for the two-class prob-
lem with training samples taken from DECQ09.

Methods H HA OA
MTMV-KerSRC 100 | 97.22 | 98.61
MV-kerSRC with stacking kernel 100 | 94.44 | 97.22
MV-kerSRC with weighted kernel || 97.22 | 97.22 | 97.22
SLR 80.56 | 97.22 | 88.93
Kernel SLR 80.56 | 100 | 90.28
SVM 80.56 | 89.19 | 84.87
Kernel SVM 77.78 | 100 | 88.89

Table 4. Classification accuracy (%) for the two-class prob-
lem with training samples taken from DEC10.

Methods H HA OA
MTMV-kerSRC 100 | 96.67 | 98.34
MV-kerSRC with stacking kernel 100 | 93.33 | 96.67
MV-kerSRC with weighted kernel 100 | 93.33 | 96.67
SLR 80.00 | 63.33 | 71.67
Kernel SLR 80.00 | 80.00 | 80.00
SVM 80.00 | 66.67 | 73.33
Kernel SVM 86.67 | 66.67 | 76.67

test on each of the ten concatenated test segments and a vot-
ing scheme is employed to finally assign a class label for each
test signal which consists of the ten segments. For the kernel
versions, we use a RBF kernel with bandwidth selected via
cross validation.

Table 3 compares the classification accuracy of the afore-
mentioned approaches as well as the MTMV-SRC approach
proposed in [10]. This method is similar to MTMV-kerSRC
except it operates in linear domain. As one can clearly ob-
serve, our MTMV-KerSRC and MV-kerSRC with compos-
ite kernels perform significantly better than the conventional
classifiers with roughly 20% performance gain. To further
show the efficiency of our approach, we repeat the same ex-
periments using DEC10 for training and DEC09 for testing.
The classification performances are provided in Table 4. Sim-
ilar behaviors can be observed in this table that our proposed
approaches considerably outperform all the conventional clas-
sification methods. These experiments validate the potential
use of our MTMV-KerSRC and MV-kerSRC with composite
kernel models for multi-sensor classification.

5. CONCLUSION AND DISCUSSION

In this paper, we propose a new multi-sensor classification
technique for personnel footstep detection which is based on
sparse representation in a nonlinear feature space induced
by a kernel function. The correlation between homogeneous
and complementary information between heterogeneous sen-
sors are efficiently exploited via a multi-task multivariate
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joint sparsity model. Various experimental results on the real
dataset show that the kernelization of the joint sparsity-based
algorithms significantly improve the classification over the
linear version studied in [10]. that our proposed method can
be applied to various other applications in which the data is
collected from multiple sources (sensors).
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