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ABSTRACT

LSP has many advantages for speech representation, espe-

cially correlates well to spectrum formants as long as the LSP

parameters are strictly ordered and bounded. This ordering

property cannot be guaranteed during HMM-based speech

synthesis when LSP is adopted as the spectrum feature, be-

cause diagonal covariance is utilized and correlation between

LSP dimensions is ignored, with the result that unstable issue

will be caused in synthesized speech. In this paper, we mod-

ify the parameter generation criterion to preserve ordering

property of generated LSPs, by considering not only the like-

lihoods for HMM and GV maximized in conventional method

but also a mis-orderings penalty. Experimental results show

that the proposed method can alleviate the mis-orderings sig-

nificantly and achieve high quality synthesizing performance

when the penalty weight is selected appropriately.

Index Terms— Speech synthesis, hidden Markov model,

parameter generation, line spectral pair, ordering property

1. INTRODUCTION

Hidden Markov model (HMM) based speech synthesis has

been widely used in recent years [1]. In this method, the fre-

quency spectrum, pitch and duration of speech are modeled

simultaneously within a unified framework during the training

procedure. At synthesis stage, speech waveforms are recon-

structed using acoustic features predicted from trained HMMs

by maximum likelihood parameter generation (MLPG) algo-

rithm [2].

Line Spectral Pair (LSP) [3] has been a popular spectrum

feature in many speech synthesis systems [4], since it has

many advantages for speech representation, especially the

distance of adjacent LSPs closely relates with neighboring

spectrum formants [5]. According to the definition of LSP

[3], every LSP dimension should be exactly ordered and

bounded, which means the value of higher dimension should

be always larger than that of lower dimension, and value of

every dimension should be in the range between zero and�. This ordering property is an important characteristic of

LSP feature, and if it is guaranteed, minimum phase property

of the reconstructed all-pole filter will be easily preserved

[6]; otherwise, unstable issue will emerge and naturalness of

synthesized speech will degrade.

However, the correlations among different dimensions of

spectrum parameters are usually ignored in the conventional

modeling method of HMM-based speech synthesis, due to

the usage of diagonal covariance to characterize spectrum

model. Thus, the crucial relationship between LSP dimen-

sions, namely ordering property, fails to be considered when

LSP is adopted as the spectrum feature. Consequently, dis-

ordered LSPs will be unavoidably generated during synthe-

sizing for the effect of static and dynamic feature variance if

no further constrain is considered. Besides, the mis-ordering

problem becomes much worse when the global variance (GV)

[7] likelihood is also considered, for the reason that each di-

mension of parameter is also modeled independently for GV

which usually has much larger distribution intervals. In [8],

some methods have been proposed to preserve the the order-

ing property of generated LSPs for minimum generation error

(MGE) training, by introducing mis-ordering related distance

measurements into model training criterion. However, since

MGE is not a fundamental criterion for model training, the

method proposed in [8] cannot deal with the mis-ordering

issue in general HMM-based synthesis using maximum like-

lihood criterion; on the other hand, advancing the training

criterion is also not a direct way to control mis-orderings and

cannot solve the problem when GV is considered.

In this paper, an improved parameter generation method

based on MLPG algorithm is proposed to achieve more di-

rect control of the mis-ordering of generated LSPs. The main

strategy is to introduce a penalty function for mis-orderings

in conventional parameter generation algorithm. The gener-

ated LSP parameter sequence not only maximizes HMM like-

lihood as well as likelihood of GV if considered, but also min-

imizes the mis-ordering penalty. Experimental results prove

the effectiveness of the proposed method.

The rest of this paper is organized as follows. In section

2, the conventional parameter generation algorithm as well

as LSP properties are reviewed. Section 3 describes the pro-

posed LSP generation method considering ordering property
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in detail. The experimental results are shown in Section 4.

Finally, section 5 concludes this paper.

2. RELATED TECHNIQUES

2.1. Maximum likelihood parameter generation

In HMM-based speech synthesis, the MLPG algorithm has

typically been adopted to predict speech parameters. Let as-

sume a static feature vector 
t = [
t(1); 
t(2); :::; 
t(D)℄> at

frame t. For given HMM � and determined state sequenceQ, the algorithm is to determine speech parameter vector se-

quence o = [o>1 ;o>2 ; :::;o>T ℄> to maximize P (oj�;Q). In or-

der to keep generated parameters smooth between frames, the

dynamic features including velocity and acceleration com-

ponents �(n)
t(n = 1; 2) are usually incorporated, that is,ot = [
>t ;�
>t ;�2
>t ℄>, and also can be formulated aso =W
; (1)

where 
 = [
>1 ; 
>2 ; :::; 
>T ℄> andW is a 3DT -by-DT matrix

determined by velocity and acceleration components.

By setting �P (oj�;Q)=�
 = 0, we can obtain the static

feature vector as [2]
 = �W>Û�1W��1W>Û�1�̂; (2)

where Û = diag[U�1q1;i1 ;U�1q2;i2 ; :::;U�1qT ;iT ℄; �̂ = [�>q1;i1 ;�>q2;i2 ; :::;�>qT ;iT ℄>; withU qt;it and�qt;it are the covariance

matrix and mean vector respectively, associated with it-th
mixture of state qt.
2.2. MLPG algorithm considering GV

To deal with the over-smoothing effect of speech parame-

ter sequences generated only by maximizing HMM likeli-

hood, parameter generation method considering global vari-

ance are popularly utilized. The GV over T frames static fea-

ture v(
) = [v(1); :::; v(d); :::; v(D)℄> is calculated byv(d) = 1T TXt=1 
t(d) � 1T TX�=1 
� (d)! : (3)

At training stage, the GVs are calculated over training

sentences and used to train the GV model �v with single

Gaussian distribution. During parameter generation, the opti-

mal speech parameter sequence 
 is predicted by maximizing

not only the HMM likelihood but also the GV likelihood, that

is the following log-scaled likelihood,L = log[P (W
jQ; �)P (v(
)j�v)�℄; (4)

with the � controlling the balance of the two likelihoods. To

determine optimal parameters, the gradient methods are used

to update 
 iteratively [7].

2.3. Ordering property of line spectral pairs

This paper focuses on LSP as the spectrum feature, which is

derived from LPC (linear prediction coefficient) as an alter-

native LPC spectral representations. For a given M -th order

LPC analysis polynomial A(z), a pair of (M + 1)-th order

LSP symmetric and anti-symmetric polynomials can be de-

rived, which areP (z) = A(z) + z�(M+1)A(z�1);Q(z) = A(z)� z�(M+1)A(z�1): (5)

The LSP coefficients are defined as those values of frequency! such that
�!2(0; �)jP (ej!) = 0 or Q(ej!) = 0	.

There is an important property of LSP: all the correspond-

ing zeros of the symmetric and anti-symmetric LSP polyno-

mials are interlaced on the unit circle, in the sense that0 < !1 < !2 < � � � < !M < �; (6)

where !2k�1 are the roots of P (ej!) while !2k are the ze-

ros of Q(ej!) with k = 1; :::; bM=2
, and the reconstructed

LPC all-pole filter preserves its minimum phase property if

this ordering property is kept intact.

Due to limited training data and consideration of compu-

tation complexity, conventional HMM-based speech synthe-

sis methods adopt models with diagonal covariance to charac-

terize spectrum features, which ignore the cross-dimensional

correlation of LSP. Since each dimension of LSP has over-

lapped distribution with neighboring dimensions [6], the or-

dering property of generated LSPs cannot be guaranteed. Be-

sides, incorporating dynamic features also introduce dynamic

variation into generated LSPs, and the GV likelihood adjusts

each dimension independently with larger intervals if consid-

ered, both of which inevitably damage the ordering property

and result in unstable synthesis filters. Thus it is important to

effectively control the LSP mis-ordering issue during HMM-

based speech synthesis.

3. LSP GENERATION METHOD CONSIDERING

ORDERING PROPERTY

Some methods has been proposed to deal with the mis-

ordering issue by introducing mis-ordering related distance

measurements into MGE model training criterion [8]. Con-

sidering that mis-ordering issue is only observed in generated

LSPs and usually the GV likelihood is also considered, it is

more reasonable to make modifications in parameter genera-

tion stage rather than the model training procedure. Here, we

propose an improved parameter generation method to allevi-

ate the mis-ordering more directly based on maximum like-

lihood criterion. In order to preserve the ordering property

cooperating with the MLPG algorithm, a cost function for

mis-orderings could be well designed, working as a penalty

term like the GV likelihood.
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3.1. Mis-ordering penalty of LSP

In order to control the mis-ordering issue effectively, ap-

propriate mis-ordering penalty (MOP) must (1) be a mono-

tonically increasing function respect to the number of mis-

orderings, (2) increase faster than the mis-orderings, (3)

response 1 to keep HMM and GV likelihood intact when no

mis-ordering generated, and (4) work efficiently with the log-

scaled likelihood maximization. Based on these conditions,

the cost function as a mis-ordering penalty is defined to be

the exponential function of mis-ordering numbers, that is,FP (
) = expfNmo
(
)g ; (7)

where Nmo
(
) is the mis-ordering counting (MOC) function

defined later.

We exploit the summation of logistic function as a com-

mon sigmoid curve to be our counting function like [8],Nmo
(
) = TXt=1 D+1Xd=1 1= (1 + exp[�(!d;t � !d;t�1 � �d)℄) ;
(8)

where !d;t = 
t(d) stands for d-th dimension of LSP at framet, with !0;t = 0 and !D+1;t = � fixed, � is coefficient to con-

trol the logistic curve shape and �d works as the differential

threshold for d-th dimension.

The counting function responses the number of mis-

orderings when negative or too small differential LSPs are

generated and responses 0 on the contrary. Note that the

MOC function and consequently the MOP are functions of 
.

3.2. LSP generation method considering MOP

The LSPs preserving ordering property are generated by not

only maximizing the conventional likelihood but also mini-

mizing the mis-ordering penalty defined above. That is,L = log[P (W
jQ; �)F�
P (
)℄; (9)

and if GV likelihood is also considered,L = log[P (W
jQ; �)P (v(
)j�v)�F�
P (
)℄; (10)

where � and 
 are the GV weight and MOP weight respec-

tively, and the LSP parameters are determined by maximizing

the proposed L, 
 = argmax
 L: (11)

In this paper, we focus on Equation (10) and keep � to

be 3T as in [7]. Let Lhmm and Lgv denote the HMM and

GV log-likelihood respectively, Equation (10) can be further

expanded as L = Lhmm + �Lgv � 
Nmo
: (12)

To determine the optimal parameter vector sequence, 
 is up-

dated iteratively with the gradient method,
(i+1)-th = 
(i)-th + � � Æ
(i)-th; (13)

where � is a step size parameter.

We investigate the Newton-Raphson method for our new

objective Equation (10), since it usually converges quickly

when the initial trajectory is close to the optimal one, with the

step Æ
(i)-th written asÆ
 = �[H(L)℄�1 �L�
 ; (14)

where the first order derivative is formulized by�L�
 = �(Lhmm + �Lgv)�
 � 
 �Nmo
�
 ; (15)

and the Hessian matrix isH(L) = �2(Lhmm + �Lgv)�
�
> � 
 �2Nmo
�
�
> : (16)

Details of derivation for �(Lhmm+�Lgv)=�
 in Equation

(15) and �2(Lhmm + �Lgv)=(�
�
>) in Equation (16) can

be found in [7]. We need to calculate the new term �Nmo
=�

additionally by�Nmo
(
)=�
 = [�>1 ;�>2 ; :::;�>T ℄>; (17)�t = [�t(1); �t(2); :::; �t(D)℄>; (18)�t(d) = � �Ed;t(1 +Ed;t)2 + �Ed+1;t(1 +Ed+1;t)2 ; (19)

with Ed;t = exp[�(!d;t � !d;t�1 � �d)℄, and the additional

second order derivative can be expanded as�2Nmo
(
)�
�
> = diag[�1;�2; :::;�T ℄; (20)

in which each�t = f�0(i; j)gD�D is a symmetric tridiagonal

matrix with �0(d; d) = �2[�d;t + �d+1;t℄; (21)�0(d; d� 1) = �0(d� 1; d) = ��2�d;t; (22)�d;t = � Ed;t(1 +Ed;t)2 + 2E2d;t(1 +Ed;t)3 : (23)

Note that �2(Lhmm + �Lgv)=(�
�
>) is approximated

by a diagonal matrix in [7] to keep positive definite. Due

to the subtraction between the second-order derivatives here,

the positive definite property of H(L) cannot be guaranteed,

which suggests the Newton-Raphson method hard to be di-

rectly employed for Equation (10). We find that a simplifi-

cation of the gradient method can achieve good convergence

performance, when starting from the following trajectory,
0t(d) =p�v(d)=v(d)(
t(d)� �
(d)) + �
(d); (24)

where �v(d) is the GV mean obtained from GV model, while�
(d) and v(d) is the mean and variance calculated over results

of Equation (2) respectively for d-th dimension.
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We implement the simplified method by keeping Hessian

matrix as that in [7], and using the new first order derivative

with MOP components. This is reasonable since the positive

defined Hessian matrix just work as a fine tuning factor to

make iteration smarter, and we notice that the mis-ordering

penalty in Equation (10) usually decrease significantly during

the first few iterations if mis-ordering happens, and then the

problem develops into the GV iteration.

4. EXPERIMENTS

4.1. Experimental conditions

The training data consists of 1132 phonetically balanced

sentences of an US English female speaker (slt) from CMU

ARCTIC databases, with the speech waveforms sampled

at the rate of 16kHz. The acoustic features, including F0,

aperiodicity measure and spectral parameters which were

40-order LSP and an extra gain dimension, were extracted by

STRAIGHT [9] analysis with a 5ms frame shift. Feature vec-

tors consisted of log-scaled F0 vector, LSP vector and aperi-

odicity measures vector, each of which also included velocity

and acceleration coefficients. A 5-state left-to-right with no

skip multi-space probability distribution HMM (MSD-HMM)

structure was adopted and GV model were trained for F0 and

spectrum vectors.

In synthesis part, the log-scaled F0, log-scaled predictive

gain and aperiodicity measures were generated by the conven-

tional MLPG algorithm. Method proposed in this paper was

used to generate 40-order LSP parameters which then were

converted into LPCs. �d was simply fixed to be 0.0 to focus

on the mis-ordering issue, and � was set to be 500.0 to en-

sure ideal logistic curve shape. The speech was synthesized

using all-pole filter with the generated acoustic features. 593

sentences from BL2009 was used as our test set.

We investigated the number of both mis-ordering frames

and sentences of generated LSPs, considering number of sen-

tences directly correlated with subjective evaluation. Aver-

aging log spectrum distortion (LSD) was calculated as ob-

jective measurement over not only normal sentences but also

the overall training set. Note that when the MOP weight was

set to be 0, the proposed method degenerated into the con-

ventional algorithm, which we employed as baseline. Sub-

jective comparison was also conducted, which was by 8 Chi-

nese postgraduate students over two groups of sentences from

test set, i.e. sentences with mis-orderings and with no mis-

orderings under conventional algorithm respectively, in each

of which 20 sentences were selected randomly.

4.2. Experimental results

Different 
 were tested to control the contribution of MOP.

Objective results including number of mis-orderings over

training set and over test set, LSD over normal training sen-

tences and over all training set, are shown in Table 1.

Table 1. Different 
 for method with MOP
 Number of Mis-orderings LSD (dB)

Training Set Test Set Over Over

Sens Frms Sens Frms Normal All

Baseline 61 963 33 384 7.2243 7.2333

1 43 573 29 293 7.2243 7.2330

10 18 114 17 69 7.2238 7.2320

50 8 21 12 46 7.2230 7.2313

100 3 9 12 43 7.2226 7.2308

200 1 4 12 40 7.2220 7.2302

1000 1 4 10 36 7.2200 7.2285

10000 1 2 9 29 7.2180 7.2267

We can see the number of mis-orderings is reduced on

both training set and test set, when the MOP weight becomes

larger, that is, the contribution of MOP in MLPG becomes

more important compared to HMM and GV likelihood. No-

tice that the proposed method is more sensitive to 
 when it is

relatively small. This is because most of the mis-orderings are

not serious, that is to say, the negative differential LSPs usu-

ally have small absolute values, which need not much MOP

contribution to solve. It is also suggested in Table 1 that
 = 200 be enough to eliminate almost all the mis-orderings

on training set except for one particular sentence which also

can be removed when 
 is large enough to achieve 105.
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Fig. 1. Example of LSP digram for different 
.

On the other hand, larger MOP weight also brings better

LSD over frames of both normal sentences and the overall

training set according to Table 1. Improvement of LSD on

normal sentences seems harder to understand than that on ab-

normal sentences, since the MOP term weakens the HMM

and GV likelihood. This can be explained as that the MOP

term also prevents adjacent LSPs to be very close, since our

sigmoid curve is not that ideal to be a step function, and

it responses non-zero values for too small differential LSPs.

According to [5], adjacent LSP dimensions can also not too

close, for that will cause very large response in spectral enve-

lope, i.e. extremely sharper formant. Figure 1 gives a typical

example, where too close adjacent LSPs were separated by

increasing 
 from 0 to 104, and LSD was improved.
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Table 2. LSD (dB) for very large 

lg
 LSD over normal LSD over all

Baseline 7.2243 7.2333

4 7.2180 7.2267

5 7.2182 7.2274

6 7.2221 7.2216

7 7.2310 7.2403

Actually, very large 
 will of course damage the synthe-

sized spectrum, shown in Table 2. When 
 is increased to107, the LSDs become worse than that of baseline. This is

also understandable based on our observation that the value of

log-scaled HMM likelihood usually 106 times that of MOP.

0.0 0.2 0.4 0.6 0.8 1.0

Baseline

No Preference

Method with MOP

12.9%

70.7%

16.4%

(a) Results over normal sentences.

0.0 0.2 0.4 0.6 0.8 1.0

Baseline

No Preference

Method with MOP

11.9%

49.4%

38.8%

(b) Results over abnormal sentences.

Fig. 2. Subjective preference scores between new method and

baseline with 95% condence interval.

Figure 2 illustrates subjective preference scores between

the method with MOP (
 was 104) and the conventional al-

gorithm. There was no obvious difference between the per-

formance of baseline and that of proposed method over the

normal sentences that no mis-orderings was observed. How-

ever, to those sentences where mis-orderings happened using

conventional method, our new method performed better than

the conventional algorithm.

5. CONCLUSION

In this paper, a parameter generation method for LSP is pro-

posed to preserving ordering property in HMM-based speech

synthesis. The proposed method generating LSP features se-

quence not only maximizes the conventional HMM and GV

likelihood, but also minimizes a mis-ordering penalty. The

experimental results show the proposed method can alleviate

the generated mis-orderings significantly with also better syn-

thesizing performance. Further, the proposed method actually

inspires an unified parameter generation framework, in which

we can replace the MOP term with any other likelihood for

specific end in future work.
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