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ABSTRACT 

Ultrasound imaging is one of the least expensive and 

safest diagnostic modalities routinely used. An attractive 

recent development in this field is three-dimensional (3D) 

imaging with two-dimensional (2D) matrix probes. The 

difficulty in implementing these probes comes from their 

large number of elements; for instance, the probe 

considered in this paper is composed of 1024 elements, 

whereas the number of channels of most current 

beamformers ranges from 64 to 256. To reduce the 

number of active elements, we propose a new sparse array 

design technique based on simulated annealing. Our 

method is capable of significantly reducing the number of 

probe elements as well as the side lobe level in a 

reasonable amount of computing time. Experiments in the 

context of hepatic biopsy show that good imaging 

performance can be obtained with only 177 active 

elements out of the total of 1024. 

Index Terms— ultrasound, 2D array, sparse array, 

simulated annealing 

1. INTRODUCTION 

In 3D ultrasound imaging, experiments are mostly 

conducted with 3D mechanical probes. In a recent 

publication,         et al. [1] propose an algorithm for 

needle detection based on a 3D mechanical scanning 

probe. The detection algorithm based on a RANSAC 

procedure is fast and accurate, but the volume acquisition 

time is a severe limitation for this application. An 

interesting alternative is electronically controlled 2D 

matrix arrays. However, the control of such arrays is a 

technical challenge because of the too large number of 

elements to be connected. Among the various methods 

proposed to reduce the number of active elements, the 

most promising is the sparse array technique [2]. This 

approach, however, deteriorates the beam pattern 

compared to the original dense array. Another problem 

involves the side lobes and the grating lobes (linked to the 

element periodicity in the array and to the element size), 

which are undesired parts of the emitted beam. These 

lobes cause image artifacts and must be as low as possible 

to obtain good image resolution. The new sparse array 

design technique proposed herein intends to limit the 

amplitude of the side lobes while minimizing the number 

of necessary active elements. The core of our method is 

based simulated annealing.  

This paper is organized as follows. Section 2 

describes the choice of the probe parameters and various 

element reduction techniques, Section 3 presents the 

optimization algorithm together with experimental results, 

and our conclusions are given in Sections 4. 

2. PROBE DESIGN AND REDUCTION TECHNIQUES 

Theoretically, to limit the amplitude of the grating lobes, 

the pitch   (that is, the inter-element distance) must be 

smaller than half the wavelength in the elevation and 

lateral directions, that is, 

d    / 2 ,        (1) 

where   denotes the wavelength.  

The main parameters of the probe (see Fig. 1) are 

chosen based on the characteristics of the tissue region to 

be explored. We consider the case of the liver inspection: 

the frequency commonly used in liver imaging is 3.5 MHz 

[3], which corresponds to a wavelength   of 0.44 mm. 

Condition (1) is satisfied at the expense of a widening of 

the main lobe, and a pitch value slightly above half the 

wavelength is a good tradeoff: we chose        . The 

elements are squares of size          and the space 

between two consecutive elements (the kerf) is      . The 

probe elevation dimension must be smaller than the 

intercostal distance, which is about 5 mm, to avoid 

reflection on ribs and the formation of image artifacts. For 

the chosen pitch value, the number of elements in the 

elevation direction is 22. For electronic adaptability, this 

number is reduced to 16. The number of elements in the 

lateral direction is 64, so that the resulting probe contains 

N = 64×16 = 1024 elements. However, since the typical 

channel number of beamformers does not exceed 256, the 

number of elements to connect must be decreased without 

excessive deterioration of the output image features.  

 

 

Fig. 1. Probe dimensions (element apodization decreases 

from the center to the edges). 
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Various techniques have been proposed to reduce the 

number of elements to connect; the most widely used are 

edge-element deactivation and sparse array techniques, 

which are discussed below. 

2.1 Edge-element deactivation 

The technique proposed by Turnbull et al [4] consists in 

deactivating edge elements so that only the circular (or 

ellipsoidal for a non-squared array) part of the matrix 

remains (see Fig. 2(a)). Moving from a rectangular to an 

ellipsoidal aperture reduces the number of elements by 

approximately 30% [5].  

Fig. 2. Ellipsoidal part of a 64×16 array and associated beam 

profiles before (continuous line) and after (dotted line) edge-

element deactivation. 

Using this technique, the initial array of 1024 

elements is reduced to        elements (that is, a 29% 

reduction). The associated beam profile is shown in Fig. 

2(b). (Note that all the beam profiles presented in this 

paper are simulated using Field II [6][7] and are displayed 

by plotting the maximum pressure along the A-lines of the 

volume scanned in the lateral and elevation direction.) 

This profile is well preserved because the contribution of 

the deactivated peripheral edge elements is low. However, 

the reduction of the number of elements resulting from 

this deactivation technique is not sufficient; it must be 

combined with a sparse array technique to be below the 

upper limit of 256 active elements. 

2.2 Sparse array techniques 

Sparse array techniques periodically or randomly 

deactivate some elements of the 2D array. The periodical 

version presents a good beam pattern in terms of main 

lobe width and pressure intensity, but the unwanted side 

lobes are prominent [8]. The random sparse array 

technique (illustrated in Fig. 3) is more promising because 

it produces a lower side lobe level while maintaining an 

acceptable main lobe width. Using this approach, the local 

inter-element distance can reach several times the pitch of 

the dense array, which has consequences on the side lobe 

appearance and on the width of the main lobe. To limit the 

effect of the reduction of the number of element on the 

beam pattern, the sparse array technique can be combined 

with an optimization algorithm to constrain the side lobe 

amplitude and to prevent widening of the main lobe [5] 

[9]. 

 

Fig. 3. (a) Random sparse array, (b) local inter-element 

distance increase, and (c) beam profiles for 260 elements 

(continuous line) and 140 elements (dotted line) illustrating 

the effect on the appearance of the side lobe and on the width 

of the main lobe. 

 

Fig. 3(c) shows that the lower the number of 

elements, the higher the side lobe level and the wider the 

main lobe, which can hinder image quality. To reduce the 

number of elements without deteriorating the beam 

profile, we use a new approach based on simulated 

annealing that we compare to the approach presented in 

[9]. 

3. OPTIMIZATION BY SIMULATED ANNEALING 

There are several algorithms for optimizing element 

deactivation; many of them are detailed in [10] together 

with their simulation results. All these methods aim to 

reduce the side lobe level while maintaining the width of 

the main lobe constant. The most frequently used methods 

are simulated annealing and genetic algorithms. For large 

2D arrays, simulated annealing is preferred for its 

robustness and its lower computational cost [11]. 

3.1 The simulated annealing algorithm 

Simulated annealing (SA) is a generic method for 

combinatorial optimization that is quite popular because 

of its ease of implementation and its global convergence 

properties. The key feature of SA is that it allows uphill 

moves (that is, moves that increase the value of the 

objective function) in order to escape local minima. By 

analogy with the physical process of annealing in solids, 

uphill moves are accepted with a certain probability 

controlled by a temperature parameter that decreases 

monotonically to zero. 

Without going into detail, an SA algorithm with cost 

function f is a Markov chain         whose transitions are 

guided by a communication mechanism  and controlled 

by a cooling sequence        . The communication 

mechanism gives the probabilities of the possible moves 

for generating a candidate solution from the current 

solution, and the cooling sequence is a divergent sequence 

of temperatures. The transitions of         are defined as 

follows: for any       such that    , 

n n 1

n

(x, y)                                          if  f (y)  f (x) 
P(X y | X x) .

(x,y)exp( (f (y) f (x)) / T )   if  f (y) > f (x) 


 
   

  

 (2) 
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Simply put, downhill moves are unconditionally accepted, 

whereas an uphill move from   to   is accepted with 

probability                       at iteration  . As the 

temperature goes to zero, the distribution of    

concentrates on the global minima of  , and the process 

converges to a global minimum if the temperature is 

inversely proportional to the logarithm of the iteration 

index [12]. However, logarithmic cooling yields 

extremely slow convergence and most successful 

applications of SA use exponential cooling, which is 

theoretically justified in [13]. In this study, we use an 

exponential cooling schedule of the form 

n N'

n 0T 0.9 T ,    (3) 

where    denotes the initial temperature value,        

is the number of remaining elements after deactivation of 

the peripheral elements of the initial 2D array, and     is 

the ceiling function. 

3.2 Proposed objective function 

The main parameters of our optimization problem are the 

number of activated elements and the maximum side lobe 

level; they must be included in the cost function. A 

general cost function was proposed in [9]. This function 

uses the pressure formulation established for the far field 

beam pattern of the I×J element probe by Nielsen et al 

[14]: 

 
i j

2I j (x  u    y  v)

i, j

1

J

i j 1

p u, v w  e  ,


 


 

    

(4) 

where      is the activation coefficient of the element at 

position      ,    and    are the coordinates of the element 

at position      , and u and v are the beam direction 

vectors.  

We propose a new cost function that improves the 

cost function presented in [9] and that allows setting the 

maximum side lobe level. This cost function uses the   -

norm of the element coefficients and produces sparser 

arrays than those obtained via the formulation in [9] and 

[11]. It is defined by  

 
 

2

d i, j

u,v S i, j

p(u, v)
f W ( p (u, v)) | w |  ,

A

 
   
  
   

(5) 

where   is the matrix of the coefficients              of 

the 2D array,   is the maximum pressure,    is the 

maximum side lobe level,   denotes the area excluding the 

main lobe and satisfying                 , and 

          adjusts the strength of the stabilization term 

          . 

Compared to the stabilization term proposed in [9] 

and [11] (which uses binary variables), ours has the 

advantage of being continuous and convex, which 

translates to an optimization problem of lower 

complexity. Note that since the activation coefficients      

in (5) are multi-valued, we define a threshold   such that 

an element       is active if        (we set       in our 

experiments). The number of elements must be lower than 

256, which is generally manageable and also suitable to 

our experimental scanner, the ULA-OP [15]. 

3.3 Results and comparison 

The initial temperature value is chosen large enough to 

accept most transitions at the beginning of the 

optimization process (       ), and the maximum 

number of sweeps is set to     , where a sweep is a 

sequence of        iterations. The constraints are the 

following: maximum side lobe level below − 40 dB and 

maximum width of the main lobe smaller than 0.3 mm 

(which is the mean value of the biopsy needle radius). The 

hyper-parameter   is set empirically: we consider the 

value that produces the best result, that is, α = 4×10
−5

 in 

the present case. 

T     sults p oduc d by T ucco’s algo it m and ou s 

are summarized in Table 1 and displayed in Figs. 4(a) and 

4(b). Both algorithms were stopped when the number of 

active elements is kept unchanged during several sweeps. 

Using our approach, the 1024-elements initial array is 

reduced to a 177-elements array (that is, an 82% 

reduction) that satisfies the constraints.  The width of the 

main lob  at − 6 dB is 0.2 mm and the side lobes remain 

low   t an − 40 dB. This is acceptable for biopsy 

operations, as the radius of the needle varies from 0.18 

mm to 0.3 mm. T   solution p oduc d by T ucco’s 

method also satisfies the constraints, but it has 58 more 

active elements and its computation took 90 additional 

sweeps. Fig. 4(c) displays the evolution of the number of 

active elements as a function of the number of sweeps for 

the two methods. The beam profiles of the optimized 

probes obtained with the two methods are shown in Fig. 5.  

The capabilities of the sparse array produced by the 

proposed method is assessed in a practical situation by 

imaging a biopsy needle with 0.3 mm radius and 16 mm 

length inserted obliquely into a phantom. The result is 

displayed in Fig. 6, where the needle appears as a thin 

high scatter density region in the phantom. The 

visualization of the needle in both the lateral and elevation 

directions is clearly acceptable. 

Method Side 

lobes 

Active 

elements 

Main lobe 

(− 6 dB) 

Sweeps 

T ucco’s − 40 dB 235 0.2 mm 271 

ours − 40 dB 177 0.2 mm 181 

Table 1: Comparisons of the results obtained with Trucco’s 

method and with the proposed method. 
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Fig. 4. (a) Sparse array produced by Trucco’s method [9]; 

(b) sparse array obtained with our method; (c) number of 

active elements as a function of the number of sweeps. 

 

 

 

Fig. 5. Beam profiles of the sparse arrays obtained with the 

proposed method (dotted line) and with Trucco’s method 

(continuous line). 

 

 

 

 

 

 

 

 

 

Fig. 6. Needle detection with the 177-elements probe 

obtained with our method: (a) lateral direction; (b) elevation 

direction. 

 

3.4 Discussion 

The number of active elements of a 2D array probe has a 

great impact on its beam characteristics. Because of 

technical constraints, this number must be small compared 

to the total number of elements, but this deteriorates the 

beam pattern by creating side lobes and widening the 

main lobe. Simulated annealing alleviates these 

drawbacks by minimizing the specific cost function given 

in (5), which includes the constraints to be satisfied. The 

effect of the constant   that multiplies the stabilization 

term is important: it should be large enough to reduce the 

number of active elements significantly, but not too large, 

as the constraints embedded in the first term of the cost 

function are not satisfied otherwise. The proposed 

approach can be used to optimize large 2D arrays in a 

reasonable amount of computing time. 

4. CONCLUSION 

This paper deals with the specification of a probe 

dedicated to biopsy applications. To design a probe with a 

small number of active elements, the sparse array 

technique is a promising approach that requires solving a 

difficult optimization problem. The new sparse array 

optimization method presented here is compared to that 

proposed by in [9]; our results show greater reduction of 

the number of active elements and faster convergence. 

Using our approach, the initial 1024-elements 2D array is 

reduced to 177 elements (82% reduction) in 181 sweeps, 

where as it is reduced to 235 elements (77% reduction) in 

271 sweeps using the method in [9]. The optimized 2D 

array was tested by simulating the detection of a needle 

inserted in a phantom and the results show the target 

clearly. An experimental probe will be designed in the 

future to assess the improvement brought by the new 

method in practical situations.  
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