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ABSTRACT

Cauchy and conical wavelets have been constructed as
a response to the lack of aperture selectivity of the Mor-
let wavelet [1, 2]. Furthermore, they allow a very simple
adjustment of their angular selectivity. On the other hand,
the Morlet wavelet has been tuned to speed in the 90s [7]
and its efficiency has been demonstrated for psychovisual
analysis. It has also been used in a powerful aerial target
tracking algorithm in [10]. These two interesting develop-
ments have been used here to build a new, highly directional,
speed-tuned wavelet called Gaussian-conical Morlet (GCM).
Like the Morlet wavelet, it presents very good characteristics
in motion estimation and tracking, namely, long temporal
dependence, robustness to noise and to occlusions. But
for aperture selectivity and directional speed-capture, GCM
easily outperforms Morlet. This paper describes the GCM
construction, utilization and aperture performances.

Index terms — Extraction of motion parameters, contin-
uous wavelet transform, directional wavelets, Morlet, Cau-
chy and conical wavelets, speed tuning, angular and aper-
ture selectivity, sequence analysis, scalability, optical flow,
block matching, sequence retrieval, 2D/3D+T coding, scal-
able video coding.

1. INTRODUCTION

The continuous wavelet transform has proved to be a very
efficient tool for signal analysis. In the late 80s and the 90s,
developments to adapt the wavelet transform to various mo-
tions have been proposed by Duval-Destin and Murenzi [7, 2].
The group of analysis parameters, i.e., usually position, scale
and rotation, has been extended to speed, acceleration and
deformation. This has led to various types of time dependent
wavelets [2, Chap. 10]. Then a very performant algorithm for
missile tracking was set up using such wavelets [10, 2]. In
[8, 11] the authors use the same energy-density based algo-
rithm but with, respectively, Expectation-Maximization plus
Gaussian mixture approach and scale functional relation plus
spatio-temporal (ST) processing blocks.

Later the second authors also use image transformation to
time-varying (1D+T) signals. The advantage of velocity de-
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tection with the motion-tuned spatio-temporal continuous
wavelet transform (CWT) over other known methods, like
optical flow (OF) [3], and even block-matching (BM), has
been already discussed in [4, 5]. OF and BM work on the
motion of pixels or of blocks, but not on regions or objects.
They are not inherently scalable either. Like BM, OF has a
short time dependence which is not very accurate for slow
motion or trajectory estimation. The three characteristics of
long temporal dependence, robustness to noise and to occlu-
sions, are the strength of wavelet analysis, and we plan to
show it further for pertinent extraction and recognition pa-
rameters in sequence analysis, compression and video data
mining. Because of its compactness both in position space
and in frequency space, the Morlet wavelet was chosen to
be tuned to speed, thus giving rise to the Morlet 2D + T
separable wavelet or DDM (Duval-Destin Murenzi) wavelet.
In Fourier space, this wavelet reads as

—

@AI(E) = /e eXp(—%‘A_l(E— ko)|?) + corr., (1)

where A = diag[l,e '/?],¢ > 1, and the correction term
is usually dropped (see [2, Eq.(3.18)]). Nevertheless numer-
ous difficulties remain when using this wavelet in directional
analysis. Although it has a good capability for directional fil-
tering, its angular selectivity is poor. It is directional in the
sense defined in [1] and [2, Sec.3.3], namely, “A wavelet 1)
is said to be directional if the effective support of its Fourier
transform 1 is contained in a convex cone in spatial frequency
space”, but the anisotropy parameter € > 1 is needed in or-
der to get a decent angular selectivity. In addition, the Mor-
let wavelet has a major drawback: its angular selectivity in-
creases with the length of the wave vector kg, since the sup-
port cone gets narrower, but at the same time the amplitude
decreases as exp(—|ko|2). On the other hand, conical and
Cauchy wavelets are genuine directional wavelets and they
don’t suffer from that defect. We have used these wavelets as
a basis for a new construction of motion-tuned, and in particu-
lar speed-tuned wavelets. The development of these wavelets
and their use in motion analysis is the aim of the present pa-
per.



2. THE NEW MOTION-TUNED CONICAL
WAVELET

2.1. The 2D Cauchy wavelet

The 2D Cauchy wavelet is a prototype of conical wavelet,
which satisfies the definition of directional wavelet in a strict
sense, since its support is a convex cone C with apex at the
origin [2]. It is given in Fourier space by

- { 0)

with « the cone aperture, & the aperture of the dual cone,
& = (cosd,sina), k € C(—a, ), [, m the moments and
7 € C(—a, «) the cone axis. One usually uses the symmetric
version of the wavelet, i.e., with [ = m, and the axis 77 along
ky.

(k&) (k- e_g5)me FT fork € C,
0, otherwise,

C(—a,a)
l,m

2.2. The 2D Gaussian-conical wavelet (GC)

By definition, the 2D Cauchy wavelet has the property that
its opening angle « is fotally controllable [2], independently
of the amplitude, thus it avoids the drawback of Morlet men-
tioned above. Nevertheless, although it has a good angular
selectivity, its radial selectivity is poor because the exponen-
tial term decays slowly as |k| — oo. This is why this ex-
ponential is often replaced by a Gaussian along k., which
concentrates the wavelet on its central frequency (1/I 4+ m, 0)
[9]. Then o > 0 controls the scale localization of the Gaus-
sian. A center correction term, x (o) = /1 + m"T_l, controls
the radial support of . This gives the expression of the GC
wavelet, in frequency space [2, Eq.(3.37)]:

gecqy = [ Freg)mE - ame i) Fec,
¢ 0, otherwise.
3)
The GC wavelet is shown in Fig. 1.

Fig. 1. The 2D Gaussian Conical filter in the (k., ky) plane: the
“shark” wavelet; side and top views.
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2.3. Construction of the (new) spatio-temporal GCM

Building a wavelet for directional velocity analysis, in a se-
quence of images, starts by building a spatio-temporal 2D+T
wavelet.

Because the 2D Gaussian conical filter has good capaci-
ties in spatial resolution and orientation, as well as radial se-
lectivity, it has been chosen as the basis for a velocity-tuned
wavelet construction. Thus we take this 2D conical term for
the spatial 2D term of our 2D+T wavelet. For the time di-
mension, we made the choice of a Morlet filter. The resulting
2D+T wavelet is constructed in a separable way in Fourier
space: the velocity-tuned 2DT filter is simply the product of
the 2D Gaussian conical with the 1D Morlet. We call the
resulting wavelet “2D+T Gaussian Conical Morlet” (GCM).
Thus it is given in Fourier space as:

Y s by) - M (w),
&J\GCJW (/Z) = 2D Gaussian conical 1D Morlet 4)

0, otherwise,

with M (w) = e~ E(wmwo)”,

2.4. Tuning the GCM wavelet to motions

Several motion operators can be applied to the “mother”
wavelet, like scaling D, translation 7', rotation R and speed-
tuning A:

[ﬁ“‘“’“t @](E,w) = asai/Qiz)\(aSE, aw),
T57 Ql(E,w) = e T EIG(Ew), (9)
[RY §](k,w) = $(r~?F,w),
[A® ], w) = $(cTk, ¢ Pw)
with, for the rotation,
(o ) ©®

Like for the speed-tuned Morlet wavelet, the application of
the above operators to the GCM wavelet is done separately
on either the spatial 2D conical part or the temporal 1D Mor-
let, depending on the temporal or spatial nature of the trans-
formation. The values of p = 2/3 and ¢ = 1/3 align the
deformation of the space-time domain with speed [7]. After
implementation of the transforms defined in (5), we can give
the expression of the 2D+T GCM in terms of the group pa-
rameters g = {as, at, 0, c}:

et " kyw) =
glafl/z(cq as r=0% . é5)!(ct asr_el;/:- e_g)™

x e~ 50 e =x(9))* g3 (cTTaw—w0)® e C(—a, ),

a

0, otherwise.
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Fig. 2. The 2D+T Gaussian Conical Morlet (GCM ) wavelet tuned
to speed: (a) Top view in the plane (kz, ky) for ¢ = 1 and aperture
a = 7/16. (b) 3D view in Fourier space (kz, ky,w) for ¢ = 4; (c)
3D sectional views in (kg, ky,w) showing the Gaussian amplitude
behavior on the (vertical) Morlet part, as well as on the (horizontal)
conical part, and for ¢ = 2.

The 2D+T GCM wavelet tuned to speed is shown in Fourier
space (kg,ky,w) in Fig. 2. From here on, our notation is
the following: v, is the real object speed in the sequence, ¢
the wavelet tuning speed, and v,,, the speed measured, on the
energy curve, by the speed-tuned wavelet family.

2.5. Speed capture initialization

The GCM wavelet can be transformed to a simple low-pass
filter by centering the wavelet in the Fourier plane. This is
done by translating the wave-vector k of the conical by the
value k( (see below) of its central frequency, and by cancel-
ing the term wy for Morlet. With this condition, the conical
and the Morlet wavelets do not oscillate any more, in fact
they are no longer wavelets, but simply filters. They also can-
not be tuned to scale. The advantage is that all the “GCM
speed-tuned filters” obtained are centered in the Fourier plane
and can easily capture the initial speed, due to their shape,
independently of the object scale. The initial central wave
vector of the conical is ko = (v/I+ m,0). Because it is af-
fected by all the transformations that the wavelet undergoes,
we thus compensate the conical wave-vector k by the central
frequency computed for all transforms, i.e.,

L 11V
Fo = —— Y (056, sin 6) ®)

ag Q¢ cd
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2.6. Analysis algorithm

For the analysis, we take the product of the whole sequence
FFT with each speed-tuned wavelet FFT. An inverse FFT
is then applied to the result to give the wavelet transform
Ww(l;, N, 6;as,at,cj) for each speed and for the whole se-
quence. We then compute the energy density, for each speed,
on the basis of a frame or of a group of Ny frames among
the IV frames of the sequence. Finally, for the group of speed
tunings c¢;, we plot the energy, FEio(c;), of pixels of the
selected frames Nj.

Brot(c;) = >3 > W(x,y, N, c;)|? ©)
No vy x

Then we study the curve f(c;) = Eiot(c;). This curve will
go through a maximum, v,,, when the speed of the tuned
wavelet ¢; matches the real speed v, of the object (a trav-
elling 2D Gaussian here). Several algorithms could be used
to optimize the search for the maximum of the energy. This
could be done, for example, by using a dichotomy rather than
sweeping the whole range of velocity tunings, or by using
Nelder-Mead as in [10].

3. EXPERIMENTATION

We first want to recall the results obtained in speed compu-
tation [5] between the Morlet speed-tuned CWT and the OF:
Total computation speed (Xeon bi-processor at 2.4gHz):

(1) MTSTWT with 3 wavelets tuned to 3 speeds (3,6,10 pix-
els/fr) on a 360 x 240 x 8 sequence block (Tennis sequence)
at the highest resolution of scale:

tMTSTWT(IQ,OOmS) + 3 X IFFTSD(?) X 380ms)= 2.4s.

(2) Fast Optical Flow with wavelets [3] between two frames
and 4 different resolutions : toF =10s.

In Fig. 3, we show the orientations that Morlet and GCM
can take for 0 < 6 < +w/2. This figure speaks by itself.
Morlet is shown with only one orientation. The reason is
that a variation of its selectivity parameter e results in a dis-
placement along the radial support of the wavelet. This dis-
placement is large enough to see, on the same radius, all the
shapes that Morlet takes if we increase the couple (ko, €). We
show four couples ko = {6,12,22,35} and ¢ = {1,2,5, 13}
We can see that the angular selectivity is very hard to ad-
just. For weak values of kg and/or e, the aperture is very
large. This aperture decreases by increasing kg and e¢. But
as kg increases, Morlet moves away, from the Fourier cen-
ter (0,0), on its radius. This makes very difficult the spatial
positioning of this wavelet with respect to a change in aper-
ture selectivity. On the contrary, with GCM the couple ori-
entation/aperture is extremely simple to adjust. We show five
orientations § = {0 to 7/2} with GCM tuned to aperture
a = {m/256 to w/16}. This proves the very good aperture
selectivity of GCM.
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Fig. 3. Comparison of aperture selectivity tuning between Morlet
and GCM. The figures show that both wavelets are easily rotated.
But, on panel (a), the Morlet wavelet behaviour, w.r.t. a tuning of its
selectivity parameter e, is awkward : the wavelet moves on its radius
with « and its radial extension is not constant, and limited. On the
contrary, panel (b) shows that on GCM, a variation of the aperture
does not implies any displacement on its radius, and that the radial
extension is constant and easily adjustable. For sake of clarity we

show the result for five rotations of GCM (6 = 0 to 7/2).

We now perform a comparison between the 2D+T Morlet
and the 2D+T GCM. We use a test sequence of 128 x 128 x
32, that includes the motion, at constant speed, of a 2D non-
symmetrical Gaussian. The angles of the Gaussian and of its
trajectory are varied (along k,, at 45° and along k).

The first experiments have been done with a symmetri-
cal Gaussian travelling at constant speed in the plane. We
checked that speed capture is as good with GCM as with Mor-
let. But this is not the real interest of this study. We then
modified the Gaussian to exhibit a strong anisotropy in the di-
rection OY in the spatial plane. For this we took a large o,
(i.e., in the OY direction) and a small o,,.. The larger o, the
narrower its spectrum along the k, direction in the Fourier
domain. Thus we are able to test the angular, or more exactly,
the aperture selectivity of the wavelet, i.e. its accuracy in di-
rectional speed capture. The orientation of the object will also
be its spectral “signature” and will enable to “capture” it in a
sequence and to assign it its speed (Fig. 4).

In the 3D Fig. 4, we can observe the spectrum of the Gaus-
sian, oriented along %, (OY in the direct space) and of large
oy, and travelling (along OX in the direct space) at a speed
v, = 3 pix/fr. The figure shows the “interception” of the spec-
trum by the hyperbola-like family of GCM wavelets tuned to
speeds between 1 and 6 pixels/fr. The aperture is &« = 7/16
and the spatial and temporal scales are as = 3 and a; = 3.
By looking again at Fig. 3, panel (a), it is obvious that in the
same conditions, a change of aperture of the Morlet wavelet
would result in a displacement of it on its radius, thus in a
change of spatial position and scale. The poor angular selec-
tivity of Morlet, together with speed-tuning, thus makes the
directional capture of the spectrum very difficult. This does
not happen with GCM. This makes it very efficient in captur-
ing the signal speed at any angle within a constant and narrow
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conical aperture & = /16 and not outside it. We will also
show further that GCM can achieve much narrower apertures
in speed-capture.

In Fig. 5, we plot the curve vy, vs. B4, for —m/2 <
0 < +m/2, with GCM. The correct speed is captured when
the wavelet orientation (§ = 0) exactly corresponds to the
spectrum orientation (k). This proves the good angular se-
lectivity of GCM, that could not be reached with Morlet, and
its efficiency to detect the correct speed of the sequence in a
very narrow angular aperture and not elsewhere.

The final Fig. 6 demonstrates the excellent performance
of GCM during a speed capture at v, = 4 and for more and
more narrow conical apertures. We have taken apertures of
/8, 7/16,7 /64,7 /256 (0.70 deg). The capture conditions
are those of Fig. 4, where the spectrum, oriented in the &, di-
rection, is narrow, and for a real speed v,, = 4. GCM captures
the spectrum for extremely weak apertures without moving in
the Fourier space. This makes it very robust to scale initial-
ization and object size detection and tracking, which is one a
the major drawbacks of speed capture with Morlet.
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Fig. 4. Demonstration of speed capture in the Fourier domain with
v, = 3. (a) The spectrum of the travelling Gaussian intersects the
speed-tuned wavelets hyperbola-like family. (b) The energy sum
plotted w.r.t wavelet speed tuning (v;). The maximum is exactly
reached for ¢ = v, = 3 pix/fr.
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Fig. 5. Result : Performances of GCM in directional speed capture:
we plot the curve v VS. Owaw for —m/2 < 0 < +7/2 for an
aperture « = w/16 and v, = 3. The correct speed is captured when
the wavelet orientation (6§ = 0) exactly corresponds to the spectrum
orientation (k).
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Fig. 6. These 4 figures show the excellent performance of GCM
during a speed capture at vr = 4 and for more and more narrow con-
ical apertures, respectively : w/8, /16, 7 /64, 7 /256 (0.70 deg).

4. CONCLUSION

This paper has introduced a new tool, based on the redun-
dant CWT, for directional speed analysis in video sequences,
namely, a new speed-tuned wavelet, the Gaussian-conical-
Morlet (GCM). It is based on a 2D Cauchy-conical genuine
directional wavelet, on one hand, together with a temporal
1D Morlet wavelet, on the other hand, and it provides a very
high directionally selective speed-tuned wavelet. This widely
improves the characteristics of the 2D+T Morlet wavelet pre-
viously used in spatio-temporal speed-based approaches of
motion estimation and tracking. It thus reinforces the effi-
ciency of the CWT tool for speed and motion tracking, and
in particular its inherent robustness to noise, occlusions and
local illumination variations as well as its efficiency to long
dependence analysis. In this work we have proved the ex-
treme efficiency of this tool in directional speed selectivity
(the aperture of the conical wavelet) down to angle apertures
of less than 1 degree (7/256). An initialization of the speed
capture has also been proposed by turning the GCM wavelet
to a simple low-pass directional filter centered in the middle
of the Fourier plane.

Concerning the application on complex synthesized video
sequences with several objects (Gaussian shapes), acceler-
ated motions and occlusions, we refer to the results obtained
with DDM wavelets [10], results that can be applied to GCM
wavelets that outclass the capacities of DDM wavelets. The
test of GCM in real video sequences is planned for a future
work and for applications in the domains of selective (through
spectral signature) motion estimation, trajectory estimation,
motion tracking and feature/sequence retrieval.
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