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ABSTRACT 

Sparse representation of natural images over redundant 

dictionary enables solution of the inpainting problem. A 

major challenge, in this regard, is learning of a dictionary 

that is well adapted to the image. Efficient methods are 

developed for grayscale images represented in patch space 

by using, for example, K-SVD or independent component 

analysis algorithms. Here, we address the problem of 

patch space-based dictionary learning for color images. To 

this end, an image in RGB color space is represented as a 

collection of vectorized 3D patch tensors. This leads to the 

state-of-the-art results in inpainting random and structured 

patterns of missing values as it is demonstrated in the pa-

per. 

 

Index Terms – learned dictionary, independent com-

ponent analysis, color image, inpainting. 

 

1. INTRODUCTION 

Information recovery from incomplete or partially ob-

served data is ubiquitous in biomedical signal processing, 

computer vision, chemometrics, communication networks, 

etc. We consider the problem of inpainting color images 

that can be damaged or corrupted by noise, [1]. It is also 

possible that certain number of pixels is saturated in some 

of the color channels, [2, 3]. An image in RGB color 

space, which is a representation used in this paper, is a 3D 

tensor. Hence, color image inpainting is a 3D tensor com-

pletion problem. One approach to solve this problem is 

based on the minimization of trace norm (also called nu-

clear norm) of the matricized tensor [4, 5, 6]. The concept 

of nuclear norm for tensors appeared for the first time in 

[4]. Nuclear norm (defined as the sum of the singular val-

ues of a matrix) is the tightest convex lower bound of the 

rank of the matrix on the set of matrices ��: ���� � 1	 
(matrix rank minimization is a non-convex problem). 

Hence, the nuclear norm minimization assumes that a ten-

sor unfolded in selected mode has low-rank representa-

tion. However, fulfilment of the low-rank assumption is 

data dependent and may fail in some applications. When it 

comes to RGB color images, experimental checking dem-

onstrates that the rank of an unfolded image tensor in each 

of the three modes mostly equals tensor dimension in cor-

responding mode. Thus, for RGB color images, low-rank 

assumption is rarely satisfied. Moreover, it has been dem-

onstrated in [7] that the minimization of the nuclear norm 

can lead to multiple solutions of the related matrix com-

pletion problem. As shown in [7], the inpainting based on 

the minimization of the nuclear norm fails to recover a 

color image damaged by a thick line pattern of missing 

pixels. 

 As opposed to the trace norm minimization, an 

approach that uses sparse representation of an image in 

learned dictionary enables inpainting of random and struc-

tured pattern of missing pixels, as it is demonstrated in [1] 

for denoising color images and in [8] for inpainting gray-

scale images. The method in [1] extends the patch space 

K-SVD algorithm-based dictionary learning, developed 

and demonstrated in [9] for denoising of grayscale im-

ages, to denoising and inpainting of color images. As dis-

cussed in [1], denoising of color images requires adapta-

tion of the orthogonal matching pursuit algorithm, used in 

the dictionary learning process, to overcome artefacts that 

occur in color image processing. That is due to the fact 

that 3D patches collected for dictionary learning do not 

represent well diversity of colors in natural images. In this 

paper, we propose to use the independent component 

analysis (ICA) for dictionary learning on a matrix of vec-

torized 3D patches collected randomly from a training set 

of color image tensors. Provided that the training set is 

rich enough, this approach is expected to represent diver-

sity of colors in natural images. Moreover, the dictionary 

learning (sparse coding) and image reconstruction (in-

painting) stages developed for grayscale images, [8, 9], 

are directly extendable to color images. The color image 

tensor in patch space representation has to be vectorized 

before "grayscale-like" processing and the image recon-

struction result has to be tensorized. Hence, the focus is 

not on finding decomposition of a given image tensor, that 

is the case in [10] where a tensor is decomposed in 

CP/PARAFAC model, but to recover color image tensor 

from incomplete data by assuming that it is sparse in the 

predefined (learned) dictionary. Thus, within the inpaint-

ing context, saturated pixels in color images can be de-
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clared as missing and recovered without impos-

ing/assuming [2]: (i) correlation between the color chan-

nels, (ii) that most of the pixels are not saturated, and (iii) 

that not all color channels are saturated simultaneously at 

some pixel location. Since a learned dictionary yields 

more efficient (sparser) representation than a fixed dic-

tionary, see [8] for details related to the inpainting ex-

periments, the learned dictionary approach proposed here 

is expected to yield a better reconstruction of the saturated 

pixel values than the fixed dictionary method proposed in 

[3].   

The rest of the paper is organized as follows. Section 2 

presents basics of tensor notation. Dictionary learning in 

the patch space representation of matricized color images 

as well as sparseness constrained image reconstruction are 

presented in section 3. Section 4 presents experimental 

results related to inpainting of color images with random 

and thick lines patterns of missing values. Conclusion is 

presented in section 5. 

 

2. BASICS OF TENSOR NOTATION 

Tensor, also called multi-way array, is a generalization of 

vectors (1D array) and matrices (2D array). The analysis 

presented in this paper is related to color images that are 

3D arrays: 1 2 3

0

I I I× ×

+
∈X � , where I1 and I2 represent the 

number of pixels in horizontal and vertical directions re-

spectively, and I3=3 represents number of spectral (R, G 

and B) channels. Each tensor index is called way or mode, 

and the number of levels on a certain mode is called di-

mension in that mode. This is the standard notation 

adopted in multi-way analysis [11]. Since the focus of our 

paper is tensor reconstruction from incomplete data, and 

not tensor decomposition, we shall not discuss here the 

tensor models. Details about this topic can be found in 

[12]. Dictionary learning approach proposed here is based 

on the representation of the image tensor X  in the patch 

space: 
3

0

l l

p

× ×

+
∈X � , where p represents a patch index 

and the size of (color) patches is √� � √� � 3. Each patch 

is vectorized, yielding a column vector 3

0

l

p +
∈x � .  Thus, 

the vectorization maps an image tensor into a matrix: 
3

0

l P×

+
∈X X� � , where P represents overall number of 

patches collected from X . Hence, a mapped color image 

X can be processed by dictionary learning and image re-

construction algorithms already developed for grayscale 

images, [8, 9], whereas the reconstructed image has to be 

tensorized.  

    

3. DICTIONARY LEARNING AND IMAGE 

RECONSTRUCTION IN PATCH SPACE 

We cast the inpainting problem in the following mathe-

matical framework. It is assumed that an image is sparse 

in a dictionary D, that is learned from an ensemble of 

patches collected randomly from color images belonging 

to the training set. The assumption of sparsity of color 

images (or more precisely, image patches) in an appropri-

ate dictionary  has already been justified empirically, see 

for example [1]. Random collection of 3D patches is ex-

pected to represent color diversity of natural images, 

which has been noticed as a problem in [1]. Formally, 

assuming an image patch 3l lI × ×
∈� , the ensemble of T 

vectorized patches forms a training matrix 
n T×

∈Y � , 

where n=3l. Each column vector represents a vectorized 

patch, assumed to be sparse in the dictionary
n m×

∈D � : 

t t
≈y Dc , 

m

t ∈c � , 
0t

mc � , m≥n and  t ∈ {1, ..., T}. 

Here, 
0t

c stands for the ℓ0-quasi norm that counts the 

number of nonzero elements in ct. Hence, learning a dic-

tionary D is a sparse coding problem. It is implemented 

through the sparseness constrained factorization of 

Y=DC, whereas sparseness constraint is imposed on the 

code C. 

Many algorithms can be used to implement sparse 

coding whereas the most often used are the K-SVD algo-

rithm [9], sparseness constrained nonnegative matrix fac-

torization (NMF) algorithm, [13], and recently ICA algo-

rithm, [8]. Here, as in [8], we shall use the FastICA algo-

rithm, [14], with tanh nonlinearity to learn dictionary D. 

The tanh nonlinearity induces the code distributed accord-

ing to the Laplacian-like probability density function, and 

that ensures the code C to be sparse. Moreover, the Fas-

tICA algorithm enables, in sequential mode, to learn over-

complete dictionary D. Thus, for the purpose of dictionary 

learning, sparse coding is interpreted as the blind source 

separation (BSS) with predefined distribution of the code 

(sources in BSS vocabulary). Detailed comparative per-

formance analysis related to the inpainting of grayscale 

images in [8] has demonstrated that FastICA learned dic-

tionary yields comparable or better results than K-SVD 

algorithm. Before dictionary learning, the training matrix 

Y was preprocessed by making every column zero-mean 

and by multiplying the resulting matrix by the matrix of 

the form � � �
� �, where � denotes 3� � 3� identity matrix, � is a matrix of the form 

� � �� 0 00 � 00 0 �� 

where � is the � � � matrix of ones, and � is an appropriate 

constant. In this way, learned basis vectors were forced to 

take into account the average colors. This idea was taken 

from the paper [1], where it was used in a somewhat dif-

ferent way, by modifying the OMP algorithm. The con-

stant � was set to � � �� � 1 � 1, where � � 5.25, see 

[1] for details. 

Once the dictionary D is learned, the actual inpainting 

is performed according to the following procedure. Let us 

assume that color image tensor X  contains damaged pix-

els on known locations. After transformation to patch 

space a vectorized patch with the vector of known pixels 
k

∈v � , k≤n, is related to the patch with true but unknown 

pixels
n

∈x � through: = =v Mx MDc . Here, M is an 

indicator matrix that is determined by the layout of miss-

ing pixels. Hence, recovery of the patch with true pixels x 

67



can be achieved through the sparseness-constrained mini-

mization: 

{ }
2

0 2
arg min : ε≤

c

c MDc - v  

where the parameter ε depends on the noise variance. Pro-

vided that
0

2k ≥ c and ε is small, the above problem has 

the unique solution. However, the above optimization 

problem is NP-hard, i.e. its computational complexity 

grows exponential with m, which makes it computation-

ally intractable for practical purposes. Computationally 

feasible solutions are obtained by replacing the ℓ0-quasi 

norm of c by ℓp-norm 

1
p

p

ip
i

c
 

=  
 
∑c . For 0<p<1 

this yields a non-convex optimization problem. Yet, algo-

rithms that minimize ℓp-norm for p<1, [15] , outperform 

ℓ1-norm minimization in practice. In this paper, as in [8], 

we have used the method proposed in [16], with 

MATLAB code available in [17]. The method minimizes 

smooth approximation of the ℓ0-quasi norm of c: 

( )
0

n Fσ≈ −c c , where ( ) ( )i

i

F f c
σ σ

=∑c  and 

( ) ( )2 2
exp 2i if c cσ σ= −  is an approximation of the 

indicator function of set {0}. The parameter σ regulates 

how close the approximation is to ℓ0-quasi norm. Minimi-

zation of 
0

c is equivalent to the maximization of Fσ(c) 

for a sequence σ1>σ2>...>σK. This approach outperforms 

methods based on the minimization of ℓ1-norm in terms of 

accuracy and computational efficiency. This is especially 

the case when the code c contains several dominant coef-

ficients and many coefficients with the magnitude close to 

zero. Such situation occurs in practice for real world sig-

nals such as images of natural scenes.  

 

4. EXPERIMENTAL RESULTS 

In the examples in this section the dictionary was learned 

from a matrix composed of vectorized 3D patches col-

lected from 23 color images shown in Figure 1. The im-

ages were downloaded from [18]. Tensorized basis vec-

tors (or atoms) learned by FastICA algorithm are shown in 

Figure 2. Most of the atoms is gray (color-less) since the 

dictionary was learned on a generic image database. These 

atoms represent spatial structure in images. The colored 

atoms should represent differences in structure in each of 

the three (R, G and B) color channels. As shown in [1], 

dictionary learning on a single image would result in more 

colored atoms since the dictionary is adapted to a single 

image. This was the approach taken in [1], where the 

dictionary was learned on the damaged image itself. 

However, here we show that comparable result can be 

obtained with generic dictionary. 

The proposed method is first tested on a castle image, 

Figure 3 top left, with 80% of pixels removed randomly, 

Figure 3 top right. The same example has been used in 

Figure 12 in [1], whereas achieved performance in image 

reconstruction was PSNR=29.65 dB with patches of the 

size 7×7×3 pixels. There, the K-SVD algorithm was used 

for dictionary learning and a modified version of the or-

thogonal matching pursuit algorithm, [19], for image re-

construction. The method proposed herein achieves PSNR 

of 29.36 dB (average of 5 runs) with patches of the size 

8×8×3 pixels, see Figure 3 bottom left. Hence, difference 

in achieved performance in image reconstruction is small 

and is, arguably, consequence of different training set 

used for dictionary learning. When each color channel is 

treated as a grayscale image, the obtained performance 

was inferior, with PSNR of 25.05 dB, see Figure 3 bottom 

right, relative to the case when the color image has been 

treated as a 3D tensor. The same result has been demon-

strated in [1] when OMP method has been used to inpaint 

each color channel separately in the dictionary learned by 

the K-SVD algorithm. We have further tested the pro-

posed method on four test images shown in Figure 4. 

These images were damaged by randomly removing 80% 

of pixels as well as by using a thick line pattern of missing 

values, see Figure 5. For images with random pattern of 

missing values, the inpainting method proposed here has 

achieved the PSNR performance of 28, 35.1, 31.9 and 

35.9 dB, respectively, with respect to top left, top right, 

bottom left and bottom right images on Figure 4. Regard-

ing the thick line pattern of missing values, it has been 

shown in [7] that trace norm minimization fails to recover 

color image with such pattern of missing values. On the 

contrary, as shown in Figure 6, the learned dictionary 

based method proposed here yielded images of satisfying 

visual quality from the images with the thick line pattern 

of missing values. Achieved PSNR values in the order 

defined previously were 34.3, 37.2, 39.8 and 37.3 dB. 

 

 
Figure 1. Training images used for dictionary learning.  
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Figure 2. Tensorized basis vectors learned by FastICA 

algorithm from the training images shown in Figure 1. 

 

 
Figure 3. Top left: original image. Top right: 80% of pix-

els removed randomly. Bottom left: the result of inpaint-

ing matricized color image tensor: PSNR=29.36dB. Bot-

tom right: the result of inpainting each spectral image 

separately as a grayscale image: PSNR=25.05dB.  

 

 
Figure 4. Four test images. 

 

 
Figure 5. Test images, shown in Figure 4, with a thick 

line pattern of missing values. 
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Figure 6. Images reconstructed by inpainting images 

shown in Figure 5 by method proposed in the paper. 

 

5. CONCLUSION 

Tensor completion for structured pattern of missing values 

is a challenge for state-of-the-art methods that minimize 

nuclear norm. Here we have demonstrated that inpainting 

of color image (3D tensor completion problem) can be 

accomplished successfully for random and thick line pat-

terns of missing values. That is achieved by sparseness-

constrained reconstruction formulated in space comprised 

of vectorized 3D patches of the image. The patches have 

sparse representation in dictionary learned in the space of 

vectorized 3D patch tensors collected randomly from the 

images in the training set.  
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