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ABSTRACT

Semi-Definite Programming (SDP) has been widely used for
geolocation based on time-delay data. It offers lower compu-
tational costs at the expense of slight accuracy decreases. In
this work, we consider the case of Doppler data, that is over-
looked in existing works, since convex relaxation for Doppler
data seems less obvious than for time-delay data. We fill this
gap and provide SDP solutions for Doppler-based geoloca-
tion. We also show that geolocation based on both Doppler
and time-delay data requires the same relaxation as geoloca-
tion based on time-delay data only or Doppler data only.

Index Terms— Geolocation, Doppler, Time-delay, Semi-
Definite programming, Convex relaxation.

1. INTRODUCTION

We address the geolocation problem, i.e. the estimation of an
emitter location using signals collected by receivers at known
locations. Geolocation is usually cast as non-linear, non-
convex, non-smooth optimization problems. Solving these
problems may require excessive computational costs, mostly
because of the absence of convexity.

The optimal scheme for geolocation consists of one-step
methods in which the signals intercepted by all the sensors
are processed simultaneously [1]. However, the scheme im-
plemented in most of existing systems is based on two steps
[2]: In a first step, receivers intercepting a signal provide mea-
surements related to the location of the emitter. These mea-
surements can be Angle-of-Arrival (AOA), Received-Signal-
Strength (RSS), Time-of-Arrival (TOA), Time-Difference-
of-Arrival (TDOA) and Doppler measurements. Then, in a
second step, these location-dependent measurements are ex-
ploited in order to estimate the emitter location. Two-step
methods are not optimal, since each measurement is realized
at a sensor independently of the signals intercepted by other
sensors.
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1.1. Convex Methods in Geolocation

The subject of non-convex optimization is also known as
global optimization [3]. Many deterministic, stochastic and
heuristic algorithms have been proposed in that field. Their
high complexity, as well as recent advances in convex opti-
mization justify attempts to solve non-convex problems by
convex methods [4]. In particular, some advanced softwares
have been developed to significantly reduce the computa-
tional load of Semidefinite Programming (SDP) and Second-
Order Cone Programming (SOCP).

These recent advances in convex optimization have moti-
vated many research works addressing the two-step geoloca-
tion problem. The approach consists of a convex relaxation
of the initially non-convex problem, so that geolocation can
be now easily solved using SDP or SOCP solvers at the ex-
pense of slight losses in positioning accuracy. In some works,
the convex relaxation is so loose that an algebraic solution
can be obtained and there is even no need for SDP or SOCP
solvers [5]- [7]. However, in order to avoid superfluous accu-
racy losses, it is recommended to consider only tighter convex
relaxation. In that case, the geolocation problem is relaxed
into SDP or SOCP problems with tighter constraints.

1.2. Contribution

Geolocation by SDP or SOCP has already been widely treated
in the case of RSS, TOA and TDOA measurements [4], [8],
including for Wireless Sensor Networks [9]. Surprisingly,
Doppler-based geolocation by SDP and SOCP has not yet
been explored. The reason for this omission is that RSS,
TOA and TDOA measurements are straightforwardly related
to distance, or equivalently to quadratic equality constraints.
Convex relaxation is easily achieved by changing the latter
into quadratic inequality constraints. Conversely, the Doppler
data structure is significantly more sophisticated, thus convex
relaxation for Doppler data is not as obvious as in the case of
RSS, TOA and TDOA data. This paper comes to fill this gap,
and its contribution is a set of convex relaxation procedures
enabling SDP and SOCP for Doppler-based geolocation.
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2. SDP AND SOCP IN GEOLOCATION PROBLEMS

For better insight, we recall in this section some properties of
SDP and SOCP, with a view toward geolocation applications.

Property 1 SOCP problems are a subset of SDP problems,
i.e. any SOCP problem can be reformulated as a SDP prob-
lem.

To exploit Property 1, one just has to rearrange SOCP
cone constraints into SDP inequality constraints on appro-
priate matrices [10]: Given a N × 1 vector u and a scalar
t, the cone constraint ‖u‖2 ≤ t is equivalent to the con-
straint

[
tI u
uT t

]
� 0. Note that the cone constraint involves

(N + 1) variables, and the SDP constraint involves a ma-
trix with (N + 1)N/2 variables. Therefore, in practice, re-
formulating SOCP as SDP is not recommended since it just
increases the number of variables, and therefore the computa-
tional complexity, without improving the performance. As a
rule-of-thumb, SOCP solvers require significantly less com-
putational resources than SDP solvers when addressing the
same problem.

Property 2 SOCP problems should be solved using specific
SOCP solvers instead of generic SDP solvers.

Furthermore, geolocation by SOCP relaxation frequently
yields ill-posed problems, with solutions that systematically
lie within the convex hull of the receivers [9]. In that case, the
resulting location estimates are accurate as long as the emitter
actually lies within this convex hull. Conversely, significant
positioning errors are systematically observed when the emit-
ter lies outside the convex hull since the location estimate is
“trapped” inside.

Property 3 The performance of geolocation by SOCP relax-
ation strongly depends on the actual location of the emitter.

To circumvent this issue, some geolocation methods in-
voke some SDP relaxations that are tighter than SOCP relax-
ations. In that case, geolocation by SDP relaxation provides
reliable location estimates, at the expense of increased com-
putational costs [9].

In this paper, we derive in Section 3 a SOCP relaxation for
Doppler based geolocation. For systems with Doppler data
obtained from a complex ambiguity function, time-delay data
is frequently available too. Thus, we address in Section 4 the
exploitation of time-delay data by the SOCP problem initially
derived for Doppler data. Since the reliability of the SOCP
relaxation depends on the emitter location (Prop. 3), we pro-
pose in Section 5 a SDP relaxation method that provides reli-
able location estimates for any actual emitter location.

3. SOCP FOR DOPPLER BASED GEOLOCATION

3.1. Doppler Data Model

Consider a positioning system consisting of N receivers em-
bedded in moving platforms with known trajectories, i.e. both
their locations and velocities are known. The observed fre-
quency at the n-th receiver is denoted νn. Let sn be the vector
of the n-th receiver location coordinates and u the vector of
the emitter location coordinates. We have:

νn =
ν0
c

(u̇− ṡn)
T (u− sn)

‖u− sn‖2
+ ν0 (1)

where c is the propagation speed, ν0 is the carrier frequency,
and the dot superscript on a symbol refers to its time deriva-
tive. In this section, it is assumed that ν0 is known precisely.
For better insight, we focus on the case of a static emitter, i.e.
its velocity is null thus u̇ = 0D where D = 2 or D = 3
depending whether the problem is two-dimensional or three-
dimensional. Multiplying (νn − ν0) by c/ν0 yields the stan-
dardized data,

fn = − ṡTn (u− sn)

‖u− sn‖2
(2)

where fn is expressed in speed units. Denote by f the vector
obtained by concatenating fn for any n = 1, . . . , N . Denote
by f̂ its noisy version, i.e. f̂ = f + ef where ef is composed
of the measurement errors. The measurement error vector ef
has a zero-mean Gaussian distributions with covariance ma-
trix σ2

fIM . The Maximum Likelihood (ML) estimator for u
using the Doppler data is the solution of:

Q(1)
ML min

u

1

σ2
f

‖f̂−f‖22 s.t.

{
fn = − ṡTn (u−sn)

rn

rn = ‖u− sn‖2
(3)

The cost function to minimize is nonlinear, nonconvex and
exhibits numerous local minima. Identifying the global mini-
mum requires a D-dimensional fine grid search. In this work,
we propose a SDP approach with lower computational costs.
Define the vector s whose n-th entry is the square range of
the emitter to the n-th stations, i.e. qn = r2n. Note that

‖f̂ − f‖22 =

N∑
n=1

(
f̂n − fn

)2
=

N∑
n=1

(
f̂n +

ṡTn (u− sn)

rn

)2

=

N∑
n=1

(
f̂nrn + ṡTn (u− sn)

rn

)2

=

N∑
n=1

(
f̂nrn + ṡTn (u− sn)

)2
qn

(4)

Thus, the problem Q(1)
ML can be written as

min
u

1

σ2
f

N∑
n=1

tn s.t.


tn ≥

(f̂nrn+ṡTn (u−sn))
2

qn

rn = ‖u− sn‖2
qn = r2n

(5)
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3.2. SOCP Relaxation for Doppler Data

Note first that the cost function is convex w.r.t. t, and that the
constraint on tn is convex too, since it can be written as the
cone constraint ([10], section 2.3)∥∥∥∥∥

[
2
(
f̂nrn + ṡTn (u− sn)

)
tn − qn

]∥∥∥∥∥
2

≤ tn + qn (6)

A first possibility to achieve convex relaxation consists of
“convexifying” the two last constraints into second-order
cone constraints. To that end, the constraint rn = ‖u− sn‖2
is relaxed into rn ≥ ‖u − sn‖2, and the constraint qn = r2n
into qn ≥ r2n (the latter is equivalent to the convex cone
constraint ‖ 2rn

qn−1 ‖2 ≤ qn + 1). As a result, the convex

problem obtained by second-order cone relaxation of Q(1)
ML

is obtained from (6) by changing equality constraints into
inequality constraints,

min
u

1T
Nt

σ2
f

s.t.


tn ≥

(f̂nrn+ṡTn (u−sn))
2

qn

rn ≥ ‖u− sn‖2
qn ≥ r2n

(7)

Note that the above SOCP relaxation is ill-posed. Indeed,
since tn ≥ 0, the minimum of the objective function is 0. The
objective function can reach 0 simply by letting qn approach
infinity, for any bounded u. Thus, in order to pose the prob-
lem correctly, it is necessary to insert a penalty term aimed to
avoid infinitely large qn. A common proposal for this penalty
term is simply

∑N
n=1 qn = 1T

Nq, and the proposed relaxation
for Q(1)

ML is finally

min
u

1T
Nt

σ2
f

+ 1T
Nq s.t.


tn ≥

(f̂nrn+ṡTn (u−sn))
2

qn

rn ≥ ‖u− sn‖2
qn ≥ r2n

(8)

This optimization problem can be solved by SOCP. The stan-
dard SOCP formulation for (8) is

min
u

1T
Nt

σ2
f

+ 1T
Nq (9)

s.t.



tn + qn ≥

∥∥∥∥∥
[
2
(
f̂nrn + ṡTn (u− sn)

)
tn − qn

]∥∥∥∥∥
2

rn ≥ ‖u− sn‖2

qn + 1 ≥

∥∥∥∥∥
[

2rn

(qn − 1)

]∥∥∥∥∥
2

(10)

3.3. Discussion

The SOCP problem (8) for Doppler-based geolocation is ob-
tained from Q(1)

ML simply by changing equality constraints
into inequality constraints (a penalty term is also inserted to
avoid ill-posed formulations). Therefore, the obtained esti-
mator is strongly related to the ML estimator.

4. INTEGRATING TIME-DELAY INFORMATION

4.1. Time-Delay Data Model

In many positioning systems, the Doppler data is obtained
together with time-delay data. For example, consider a posi-
tioning system built of N receivers embedded in platforms,
where the transmit signal waveform is known at the receivers
but the transmit time t0 is unknown. Using the ambiguity
function evaluated independently at each receiver, we obtain
N pairs of measurements composed of a time-delay measure-
ment and a Doppler-shift measurement. The time-delay mea-
surement at the n-th receiver is denoted by τn. We have:

τn =
1

c
‖u− sn‖2 + t0 =

1

c
rn + t0 (11)

where rn = ‖u− sn‖2. Multiplying τn by c yields the stan-
dardized data,

dn = ‖u− sn‖2 + d0 = rn + d0 (12)

where dn is expressed in distance units and d0 , ct0. Note
that fn = ḋn. Denote by r the vector whose n-th entry is
‖u − sn‖2. Denote by d = r + d01N the vector obtained
by concatenating dn for any n = 1, . . . , N . Denote by d̂ =
r + d01N + ed its noisy version where ed is the vector of
measurement errors. The time-delay measurement error ed
has a zero-mean Gaussian distribution with covariance matrix
σ2
dIM , and ed is independent of the Doppler-shift error ef .

The Maximum Likelihood estimator for u is the solution of:

Q(2)
ML min

u

1

σ2
f

‖f̂ − f‖22 +
1

σ2
d

‖d̂− r− d01N‖22 (13)

s.t.

{
fn = − ṡTn (u−sn)

rn

rn = ‖u− sn‖2
(14)

In other words, the optimization problemQ(2)
ML is actually ob-

tained by adding a time-delay based objective to the Doppler-
shift based objective function of Q(1)

ML. One can easily check
that Q(2)

ML is equivalent to

Q(2)
ML min

u

1

σ2
f

‖f̂ − f‖22 +
1

σ2
d

‖P(d̂− r)‖22 (15)

s.t.

{
fn = − ṡTn (u−sn)

‖u−sn‖2
rn = ‖u− sn‖2

(16)

where P = IM − 1
M 1M1T

M . Again, this Maximum Like-
lihood cost function is nonlinear, nonconvex with numerous
local minima, making its minimization a sensitive task.
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4.2. SOCP Relaxation for Doppler & Time-Delay Data

Following the same steps as in (4)-(5), we rewrite Q(2)
ML as:

Q(2)
ML min

u

1

σ2
f

N∑
n=1

tn +
1

σ2
d

‖P(d̂− r)‖22 (17)

s.t.


tn ≥

(f̂nrn+ṡTn (u−sn))
2

qn

rn = ‖u− sn‖2
qn = r2n

(18)

Following the same steps as in (7)-(8), second-order cone re-
laxations of Q(2)

ML yields the SOCP Q(2) defined by

Q(2) min
u

1

σ2
f

1T
Nt+ 1T

Nq+
1

σ2
d

‖P(d̂− r)‖22 (19)

s.t.


tn ≥

(f̂nrn+ṡTn (u−sn))
2

qn

rn ≥ ‖u− sn‖2
qn ≥ r2n

(20)

This convex problem can be solved using SOCP solvers.

4.3. Discussion

The Maximum Likelihood cost function associated with
time-delay data is added to the SOCP problem designed
for Doppler data with no need for further convex relaxations.

5. SDP FOR ROBUST GEOLOCATION

We have mentioned earlier the drawbacks of the SOCP relax-
ation, and the motivation for SDP relaxation to circumvent
them. We describe here a SDP relaxation approach. Define
Q = rrT and z = ‖u‖22. Then, the following identities hold:

‖P(r̂− r)‖22 = tr
{[

Q r

rT 1

][
P −Pr̂

−r̂TP ‖Pr̂‖22

]}
(21)

‖u− sn‖22 = tr
{[

I u
uT z

][
sns

T
n −sn

−sTn 1

]}
(22)

qn = {Q}n,n (23)

Then, inserting (21)-(23) in (17), the ML problem Q(2)
ML can

be equivalently written as

min
u

1T
Nt

σ2
f

+
1

σ2
d

tr
{[

Q r

rT 1

][
P −Pr̂

−r̂TP ‖Pr̂‖22

]}
(24)

s.t.


tn ≥

(f̂nrn+ṡTn (u−sn))
2

{Q}n,n

{Q}n,n = tr
{[

I u
uT z

][
sns

T
n −sn

−sTn 1

]}
rn ≥ 0

Q = rrT and z = ‖u‖22

(25)

This optimization problem is not convex only because of the
two last constraints. Thus, similarly to many recent publi-
cations addressing SDP-based geolocation in the absence of

Doppler data, the non-convex constraints
Q = rrT and z = ‖u‖22

are “convexified” by the mean of the convex relaxation:
Q � rrT and z ≥ ‖u‖22

where A � B means that the matrix A−B is positive semi-
definite. These new constraints are equivalent to[

Q r

rT 1

]
� 0 and

[
I u

uT z

]
� 0

Therefore, the proposed SDP relaxation is

min
u

1T
Nt

σ2
f

+
1

σ2
d

tr
{[

Q r

rT 1

][
P −Pr̂

−r̂TP ‖Pr̂‖22

]}
(26)

s.t.


tn ≥

(f̂nrn+ṡTn (u−sn))
2

{Q}n,n

{Q}n,n = tr
{[

I u
uT z

][
sns

T
n −sn

−sTn 1

]}
rn ≥ 0[

Q r

rT 1

]
� 0 and

[
I u

uT z

]
� 0

(27)

This convex problem can be solved using SDP solvers.

6. NUMERICAL EXAMPLES

Two receivers are embedded in mobile platforms with veloc-
ity equal to 300 [m/s] and trajectories parallel to the x-axis, at
y = 0 and y = 2500 [m] as shown in Fig. 1 (thick lines). Pairs
of time-delay and Doppler-shift measurements are realized
every 2 seconds (thick crosses), and each receiver performs 5
pairs of measurements, so that there are all together 10 pairs
of measurements. The standard deviation of small errors in
time-delay is 25 [m]. The standard deviation of Doppler er-
rors is increased from 1 to 20 [m/s]. A set of 200 experiments
is realized. In each experiment, the errors are drawn from a
zero mean Gaussian distribution.

In a first experiment, the emitter is placed at (2000, 2000)
[m] (thick circle in Fig. 1). Geolocation is achieved by SOCP
relaxation for Doppler data only (8), by SOCP relaxation for
Doppler and time-delay data (20), and by SDP relaxation for
Doppler and time-delay data (27). The performance of these
three algorithms is plotted in Fig. 2, together with the Cramer-
Rao bounds. As expected, SOCP relaxation with time-delay
data achieves better results than without. But the main re-
sult is that when using both Doppler and time-delay data, the
SOCP relaxation provides slightly better results than the esti-
mator based on SDP relaxation. A further drawback of SDP
over SOCP is its increased computational costs. From this ex-
periment, one may erroneously conclude that SDP offers no
benefits over SOCP. Note that in this experiment, the emit-
ter location lies in the convex hull of the successive receivers
locations, i.e. is encompassed within the geographical area
defined by the receivers trajectories.

In a second experiment, the emitter is placed out of this
area at (2000, 5000) [m] (thick square in Fig. 1). The perfor-
mance of the considered algorithms is plotted in Fig. 3. In this
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setting, the SOCP algorithms (Doppler data with and with-
out time-delay data) both fail in providing location estimates
since the positioning error is about 3000 [m]. Conversely, the
SDP algorithm still provides accurate location estimates, as
in the first experiment. Therefore, this experiment confirms
that SDP relaxation ensures robustness against emitter lying
at locations that make SOCP-based geolocation fail.

Fig. 1: The successive
locations of the re-
ceivers (cross markers)
and the emitter location
(circle marker for the
1st experiment, square
marker for the 2nd

experiment)
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Fig. 2: Performance of SOCP and SDP relaxations for an
emitter location encompassed by receivers trajectories.
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Fig. 3: Performance of SOCP and SDP relaxations for an
emitter location not encompassed by receivers trajectories.

7. CONCLUSION

In this work we have exploited convex relaxation meth-
ods to solve the geolocation problem using Doppler data
and Doppler with time-delay data. Two convex relaxation
approaches are considered, enabling positioning by Second-
Order Cone Programming (SOCP) or Semi-Definite Pro-
gramming (SDP). The former requires lower computational
resources, but accurate positioning is not guaranteed for
any emitter location. Conversely, the SDP approach sys-
tematically provides accurate estimates, at the expense of
increased computational costs. Furthermore, we have shown
that adding time-delay data to the Doppler data set does not
require further relaxations to get SOCP and SDP estimators.
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