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ABSTRACT

We propose an analysis of some connections existing between
sparse estimation and detection tests. In addition to the General-
ized Likelihood Ratio (GLR) and to the Bayes Factor, we consider
two tests based on Maximum A Posteriori estimates of the sparse
vector parameter. These detection tests are then set in order to take
advantage of a redundant dictionary, and to account for instrument
and noise characteristics specific to the MUSE integral field spectro-
graph, which will deliver astrophysical hyperspectral data. We use
in this framework a specific representation dictionary, designed by
finely discretising elementary spectral features (lines with various
widths, steps, and continuum parameterisation). We show that the
proposed detection strategy is efficient, and outperforms the GLR.
Finally we present a possible improvement to this detection strat-
egy, by exploiting spatial dependencies existing in the data cube.

1. INTRODUCTION

The literature in inverse problems has shown in the last decades
a particular interest for various “’sparsity aware” detection and es-
timation methods [8]. In an estimation framework, such methods
are often based on thresholding functions, some of which can be
interpreted in the Maximum A Posteriori (MAP) framework with
appropriate priors [1]. Sparse estimation aims to identify spaces of
reduced dimension where the information of interest is living, and is
therefore related to the problem of detecting an active support. In a
detection framework, specific test statistics have been introduced in
order to focus on active components as well [5]. Despite the obvious
similarity between the sparse estimation and detection approaches,
analyses of their connections seem to be absent from the literature,
except recently [6].

In this framework, a first objective of the present paper is to
point out some connections existing between sparse estimation and
detection tests. In particular, we show that the soft thresholding
detection test statistics introduced by Fan in [5] correspond to the
Posterior Density Ratio (PDR) test discussed by Basu in [2]. We
also show that a particular case of the PDR and of another test in-
troduced here (the Likelihood Ratio using a Maximum A Posteriori
estimate, LRMAP) leads to consider the regularisation parameter
involved in the Basis Pursuit Denoising (BPDN, [4]) problem as a
per component detection threshold. Although such an interpretation
has already been underlined in the literature (e.g. in [3] and [6]), we
establish here its link with the PDR and LRMAP tests.

A second objective of this paper regards the application of
”sparsity aware” detection tests to astrophysical hyperspectral data.
The detection tests are set in order to take advantage of a redundant
dictionary, and to account for instrument and noise characteristics
specific to the MUSE instrument, which will deliver astrophysical
hyperspectral data. We use in this framework a specific representa-
tion dictionary (originally used for spectral restoration in [3]), de-
signed by finely discretising elementary spectral features to be de-
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tected in the data (lines with various widths, steps, and continuum
parameterisation).

The paper continues with Sec. 2, where we introduce the con-
sidered detection tests and summarize some results from [9] which
will be necessary for the sequel. The connection between Fan’s soft-
thresholding detection test and Basu’s PDR is made in this section.
A comparative analysis of these tests, along with a numerical illus-
tration is proposed for a simple model. We turn to a more general
model in Sec. 3, where a redundant dictionary is introduced in order
to promote sparsity of the data in the dictionary column space. The
Sec. 4 applies the proposed detection tests to hyperspectral astro-
physical data. A dictionary specifically designed for the modeling
of galactic spectra is exposed, and injected in the detection tests.
Connection is made to the works [3] and [6] in Sec. 4.1. In a first
step the spectra are considered independent, and spatial dependen-
cies are exploited in a second step. Numerical results are exposed
in Sec. 5, before concluding the paper.

2. DETECTION TESTS
We first consider the following hypothesis test:

{%:z=m w~ A (0,1)

M x=0+w ' ()

where x,0 and w are N-vectors and 6 has a few non-zero de-
terministic parameters. The detection tests we compare are the
Generalized Likelihood Ratio (GLR), the Bayes Factor (BF), the
Posterior Density Ratio (PDR, [2]) and a Likelihood Ratio (LR)
using a MAP estimate. Denoting by 7(6) a prior probability
distribution, the definitions of tests statistics are:
max p (x| 6)
040
GLR(x) = =———=—;
p(x|0)
_ Jenp(x]0)7n(0)d0.

Generalized Likelihood Ratio:

Bayes Factor: BF (x ;
W=k
max p (8 | x)
Posterior Density Ratio [2]: PDR(x) = ii;
p(0]x)

LRMAP(x) = p (x| Omap)

LR using 8|7 = 8,,,p: p(x]0)

where 0,,,p = argmaxg p (x| 6) 7 (8).

As both the Maximum Likelihood (ML) and the Minimum
Mean Squared Error estimates of @ are in general not sparse, we
expect the GLR and the BF not to be optimal here. We shall nev-
ertheless use these tests for the purpose of comparison. In contrast,
and as now widely known, MAP estimates using a Laplacian prior
(or more generally any probability density function which is strictly
decreasing at 0) yields estimates 0,,4p Where 0O values are favored
[1]. This makes such priors interesting for detection in the case of
sparse parameters, and is indeed one motivation for considering the
PDR and introducing the LRMAP as defined above.

The computation of each test statistic, considering a Laplacian
prior 7(8) =TT, 2% exp~|91/% for the BF, the PDR and the LRMAP,
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yields, up to constants that can be included in the thresholds of the
tests, to [9]:

o Torr(x) = ||x]%,

o Tpr(x)= ﬂez { |:2C05h(%) —® <fx,- + )Li’) - (x,'Jr %)] },

o Tpor(x) = Y, (il —1)%
iENZ
o Trrmar(x) = Y, (7 —2);
icNZ '

where ®(-) denotes the cumulative distribution function of a stan-
dard normal distribution, and NZ is the set of indices for which
Omap, # 0. For model (1) with Laplacian prior, the MAP estimate is
well known to correspond to a soft-thresholding of each x; at thresh-
olds 1/4; [8]. Consequently, using the indicator function () the
statistics of PDR and LRMAP further simplify to

N

1
Tpor(x) = ¥ ( |x,|—— )21 (|x;| > ) )
i=1 ’
N 1
TrrmaP (X Z M (Jxi] > 7 )

i=

These expressions show that in order to set the same false alarm rate
on each component, the 1/4; should be made equal to some value,
say 1.

Interestingly, the latter form of Tppg corresponds to the soft thresh-
olding statistics introduced in detection by Fan [5], with the ob-
jective of focusing the test on active components only, in order to
mimic an Oracle to which the support of 6 is known. The PDR test
introduced by Basu [2] consequently furnishes a precise framework
to soft thresholding in detection.

Note finally that the results above hold not only for (1) but also for
two slightly more general models, namely

I z=0o+E, 3

where £ ~ A4 (0,2), X :diag{cr]z, .. .,01%,}, and

A :z=Ba+w,

where w ~ .47 (0,1) and B is an orthonormal dictionary (a wavelet
basis for instance) Indeed, both models reduce to (1), the former

by noting x =X~ 2z, 0=xX" za and w =X%X" 28 and the latter by
noting x = Bz and = B’ a. For (3), the hyperparameters A; should
be taken as A; = 6;/7 in order to have a uniform false alarm rate on
all components (see Sec. 4.1 for a discussion on this point).
Coming back to the PDR and LRMAP for model (1), these

tests are of the form 7'(x) EZ(‘) ¥, with Tppgr and Tygyap positive

as clearly visible from (2). For both tests, the maximal false alarm
rate at a fixed 7] is obtained by setting y = 0:

Ppa, =Pr(T >017%) = 1-=Pr(|lx| <n Vi)
= 1-(2(n)-n". @

Denoting by NZ* the set of indices for which 6; # 0, we obtain the
detection probability at ¥ = 0O for both tests:

Pper, = Pr(T > 0|74)

=1-(2®(n)~1)N-CHANZITT 12— (n—6)
ieNZ*

~o(n+6,)]. (5)

For y =0, the Receiver Operating Characteristics (ROC) of the PDR
and LRMAP tests are thus precisely characterized by eq.(4) and (5).

Fig.1 compares the ROC curves of GLR, BF, PDR and LRMAP
tests for a sparse vector with two non-zero components of ampli-
tudes 3 and 3.79. The Neyman-Pearson test (for which the alterna-
tive O is known) is shown in cyan for reference. For the case n = 2

first, the ROC of the GLR, BF, LRMAP and PDR are respectively
plotted in solid yellow, dashed dot black, solid blue and dotted blue.
As expected, PDR and LRMAP outperform the BF and GLR. Both
test statistics essentially focus on the largest components in x, and
therefore mimic the Oracle. Note that the PDR ROC curve is su-
perior to that of the LRMAP in this case, except at the point given
by the two equations (4) and (5). (This point is the top right here :
Pra, = PpeT, ~ 1 for n = 2). However, this is not systematic and
it is parameter dependent. We will not pursue the comparison be-
tween PDR and LRMAP at y # 0 for the reasons exposed at the end
of this section.

For two other values of 1) (3.46: green and 3.8: red), we have plot-
ted only the ROC of PDR and LRMAP (solid and dashed curves
respectively). At high values of 1, the ROC of both tests tend to be
equivalent. They are strictly equivalent for y = 0, which correspond
to the magenta points. The locus of such points corresponds to the
maximum probability of false alarm at a given 1, and is written in
closed form in eq. (4) and (5). In the general case, the PDR and

g‘ 0‘.6 017
Figure 1: ROC of the NP, GLR, BF, LRMAP and PDR detectors.
The NP, GLR and the BF tests are shown only for n =2. At fixed
n, the maximal extension in Pr4 of the ROC curve of the PDR
and LRMAP tests can be computed analytically through (4) and
(5) (magenta points). These points correspond to set ¥y = 0, in
which case the two tests become equivalent.

LRMAP tests depend on two parameters, 1 and y. The strategy of
setting Y = 0 allows to precisely control the Pr4 and the Ppgr of the
test through the sole tuning of 1 via eq.(4) and (5).

We note however that numerical results (not displayed here)
show that this strategy may not be optimal: PDR and LRMAP tests
may achieve a higher Ppg7 for the same Pr4 = Pry, obtained for
Y = 0, by using a different value of 7 and y # 0. But since the
distribution of Tppg and Ty gyap are not known for finite N [9], in
practice the Pgy = Pr(T(n) > vy|74) of such tests cannot be com-
puted analytically. An empirical evaluation is possible and requires
to sample numerically the distribution of 7(1n). To keep the tests
simple, we will focus on the ¥ = 0 case, for which we show that
satisfactory performances can be achieved in practice.

3. DETECTION TESTS BASED ON A REDUNDANT
DICTIONARY

We now turn to a more general model where we aim to promote
sparsity through a redundant dictionary. We test .7 : x = w against
4 :x=DO +w where D = [D; ...Dy] is a redundant normalized
dictionary of size (N x L) with L > N atoms, 8 is a column vector of
L components, assumed to be sparse and w ~ .47(0,1). We compare
again the PDR and the LRMAP for a Laplacian prior with parameter
A= %, to the GLR.
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GLR: The ML estimate of 6 is
R 1 2
QML:argmaxp(ﬂQ):argrmnEHg—DQH . (6)
0 o

Since D is (N x L) with L > N, 8,,; achieves D8,,;, = x. Thus, it
is easy to see that T z(x) = ||| as before.

LRMAP and PDR: Considering the model above, 8,,4p is the so-
lution of

A o1
Byiap = argmin 7 lx— DOII* + 18]l @)

which is also called BPDN [4]. In contrast to Sec.2, QMAP cannot

be obtained by direct soft thresholding. If ,,,p verifies (7), there
exists u which verifies [7]

D' (Dbypp—x) +Mu=0, (®)
where
uj = sgn(Byap) if éMAP,- #0 ©)
u; § 1 if QMAP,- =0 ’

As a consequence, for sufficiently large 1, 0. map 1s identically zero.
The first non-zero component of ] map appears when 1 falls be-
low max;(|D;'x|): if 1 > max;(|D;'x|), it is easy to see that taking
QMAP = 0 in (8) automatically yields a u which satisfies (9).

By multiplying (8) by Q;,,AP and by noting Xy;4p = DQMAP, we ob-
tain

£ap(Eriap —x) +10apll1 =0. (10)
From the definition of the LRMAP we have
6
LRMAP(x) = M = Trrmap = log(LRMAP) (11)

p(x|0)
. 1 .
= hyup— 2 XMAPEMAP-

By adding %XtMApiMAP to both terms of (10) and comparing to
Tirmap above, we obtain the test statistics for the LRMAP (and
similarly for the PDR) :

~ 1, . 1, R
Termar =N ||Opap||, + EEIMAPEMAP; Tppr = S3MaPivAP: (12)

from which we see that both test statistics are strictly positive, or
null if 6,,4p = 0 (that is, if max;(|D;/x|) < n). For a fixed value of
1N, the maximal Pr4 is thus given for both tests at y = 0 by

Pra, = Pr(T > 0| ) = Pr(max(ID/x]) > 1 | ). (13)

Since D is redundant, the components of the L-vector D'x are not
independent, and finding Pry4, analytically is thus a difficult prob-
lem (see [6] and references therein). We can nevertheless resort
to Monte Carlo (MC) simulations to obtain an accurate correspon-
dence between 7 and Ppy, (as proposed in Sec. 5). Note finally
that for y = 0, it is not necessary to solve (7) to implement these
detection tests, as they amount to compare max;(|D;'x|) to 1.

4. APPLICATION TO HYPERSPECTRAL DATA

We consider detection tests based on sparse estimation in the con-
text of astrophysical spectra restoration for the forthcoming MUSE
instrument. MUSE is an integral-field spectrograph, which will be
installed at the Very Large Telescope (ESO, Chile) in 2012 and
will deliver data cubes composed of 300x300 spectra sampled at

~ 3400 wavelengths of the visible spectrum. One of the major chal-
lenges of MUSE concerns the detection and characterization of very
distant galaxies. Such light sources are very faint, spatially local-
ized within a few pixels and may show only a few spectrally salient
features. Data will be acquired with very low signal-to-noise ratio.
In particular, data will be strongly contaminated by the spectral sig-
nature of atmospheric molecules. In addition, data will be affected
by a strong Poisson noise, which is indeed data dependent. More-
over, the instrumental detection efficiency is variable with wave-
length. Consequently, the noise level is highly variable from one
wavelength to another, and also from one spectrum to another. This
has consequences on the setting of the detection tests, which will be
made apparent in Sec. 4.1.

Considered as a linear system, MUSE is characterized by its three-
dimensional point spread function (PSF, the impulse response in
both spatial and spectral domains), that can be separated into the
spatial PSF, which typically covers 7 x 7 pixels, and the spectral line
spread function (LSF), which spreads over 11 spectral elements.
Note that MUSE is still under construction, so only simulated data
are available until now. These data result from high-complexity as-
trophysical simulations, and account for noise and instrument char-
acteristics.

Restoration of MUSE-like spectra was recently addressed
in [3], where prior information was incorporated through sparsity
constraints. A redundant dictionary R of elementary spectral fea-
tures was built in accordance with astrophysical knowledge, so that
the sparsely estimated non-zero components can be interpreted as
physically meaningful features. More precisely, R concatenates
three sub-dictionaries : R = [RZ R° R”], each of which corresponds to
a specific spectral component: a line spectrum, a continuous spec-
trum and a series of discontinuities. R’ is a dictionary of discrete
splines with several widths, which are centered along the recon-
struction wavelength axis. Eleven width values were used, varying
from 1 (delta functions) to 138 points. Delta functions and splines
model respectively unresolved and resolved absorption or emission
spectral lines. MUSE’ spectral resolution equals 0.13 nm so that the
maximal width equals 138 x 0.13 ~ 18 nm. The continuous spec-
trum is composed of sine functions with low frequencies (reduced
frequencies vary from 1/N to 8/N, where N is the number of data)
and 8 discretized phase shifts. It also includes the continuous com-
ponent by means of a constant signal. Finally, dictionary R” models
a series of breaks in the spectrum, and is composed of step functions
which are also centered along the wavelength axis. While the works
[3] used this dictionary in the framework of spectral restoration, we
use it for detection purpose here. We first consider MUSE spectra as
spatially independent, and then suggest a strategy to exploit spatial
dependencies.

4.1 Detection for independent spectra

Denoting by H the matrix form of the LSF, the observation model
reads
Hi:y=Hs+g=HRa+e,

14
where H is (N X N), R is (N X L), a is a sparse L-vector, and € is
supposed Gaussian with known covariance matrix . Working with
weighted data E*% s the model becomes

A X 1y =Y THRa+w, (15)
where £~ HR = Dyy appears as an equivalent dictionary, and w ~
A (0,1). Noting finally x = £y, D= DyyN, ! and 6 = Np,,, .

with Np,,, the diagonal matrix composed of the norms of columns
of Dyy, we obtain the same model as in Sec. 3, that is:

J4 : x=DO+w. (16)

Interestingly, it was shown in [3] that the normalization of the equiv-
- 1 .
alent dictionary Dyp = X7 2 HR leads to uniform false alarm rate on
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all coefficients of 0, which is controlled by the parameter 1 of the
BPDN. A similar interpretation of 1 can be found in [6]. From the
previous section, the PDR and LRMAP tests Tppg/zrarap(1) 25{‘) Y,
where Tppg/rruap are as in eq.(12), lead to this interpretation in the
particular case where y = 0.

Let us finally mention that for MUSE data, implementing the
PDR and LRMAP tests as described above requires to compute

. . 1 .
and normalize one dictionary Dyy = X~ 2 HR per spectrum, since,
as discussed at the beginning of this Section, the noise power is
strongly variable spatially.

4.2 Improved detection exploiting spatial dependencies

As seen in the introduction of this Section, two spatially contiguous
spectra are likely to share some spectral information, either because
the galactic source is resolved (i.e. spread over several pixels), or
because of the spatial PSF. After performing the detection tests de-
scribed in eq.(12) and (13) for a target Pra, (1) on the MUSE data
cube, we are left with a set I' of spectra flagged as “detected”, and
a complementary set I' of spectra in which no feature was found at
the significance level set by Pry,. We propose the following strategy
to improve the detection on some spectra of I': we use the spectral
feature(s) estimated in neighbor spectra, in which significant fea-
tures have been detected, to set a ”second round” detection test. To
be more specific, let us denote by x;, € I and x € T' two neighbor
weighted spectra, the former having bright (detected) spectral fea-
tures, and the latter no detected spectral feature. In a first (crude)
approximation, our model will assume that the two noiseless spec-
tra are the same. A meaningful estimate )jf of x £ can be computed
as £, = DO(x;,) = £,, where 8(x,) is a sparse parameter vector esti-
mate based on the bright neighbor spectrum. [l (x3,) can for instance
be obtained as the solution of eq.(7) for x = x,, (efficient strategies
are discussed in [3]). A fast alternative is to use a greedy algorithm
such as the Matching Pursuit (MP) [8] for instance. Since in the first
approximation considered here we assume that the neighbor spectra
are the same, we have for the faint spectrum, the following simple
model under 4 :

xp=%+w,  with £ =DB(x,). an

This model accounts for spatial dependency.
Injecting the estimate £ in the Likelihood Ratio, a matched filter-
like second round detection test for x f is therefore

P(&fﬁf) 4 / 1 H,
Do) o & Xk - SEE2y, (18)
p(x/10) 1, Ay~ ik 2
which is obtained similarly as in eq.(12) and where ¥ = logy’. The

. . Lors
corresponding Pr4 (7) is 1 — ®( Hllf?;lfléf )

5. NUMERICAL RESULTS

For the purpose of MC simulation we will show results for spec-
tra shorter than those of MUSE (N = 2048 instead of = 3400).
To quantify how the noise € affects a particular convolved spec-
trum sy = Hs in (14), we define the Signal-to-Noise Ratio as
SNR(sy) = 10log;q ,IUE’{%} To fix the ideas, a SNR of 0dB cor-
responds to a noise that has the same power as the convolved spec-
trum, and a SNR of —20dB corresponds to a noise power hundred
times greater than the power of the convolved spectrum.

We first compare the detection performance of GLR and
PDR/LRMAP on one of the spectra simulated by the MUSE con-
sortium. The model is (14), and in this simulation ¥ = I (spec-
trally variable noise will be considered in the next experiments).
The first step is to compute via MC simulation the correspon-
dence Ppy, < 1 (cf eq.(13)). This is shown in Fig 2(a). For in-
stance, Pp4 = 0.01 < 1 =4.72. The considered spectrum is shown
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Figure 2: Compared detection performances of PDR/LRMAP
and GLR on a MUSE spectrum.

10

in Fig 2(b) in blue, and the corresponding noisy data are shown
in cyan. The SNR equals —19.3dB here, which is representative
of MUSE spectra (compare with Fig. 3(b)). Fig 2(c) compares
the ROC curves of PDR/LRMAP (blue) vs GLR (red) at fixed
SNR = —19.3dB. For the GLR, the threshold y corresponding to
a desired Ppy is easily obtained by

Pea(y) = Pr(|l2]* > 1) = 1= @2 (7) = 7’=‘1°;,zvl(1 —Pr). (19)

Clearly the PDR/LRMAP tests are superior to the GLR. While the
latter test is ”blind” to the dictionary model and acts as an energy
detector, the former tests allow to detect more efficiently particu-
lar spectral features (the emission line visible in 2(b) is detected by
a wide spline in the dictionary here). Turning now to Fig. 2(d),
the detection performances of PDR/LRMAP are compared at fixed
Prs = 0.01 versus SNR. The tests allow better detection w.r.t. GLR
for a rather wide range of SNR (—10 to —20dB for this spec-
trum). The tests are compared on a reduced MUSE data cube of size
50 x 50 in Fig 3, which is illustrated in Fig 3(a).The SNR of each
spectrum is shown in Fig 3(b). Most spectra are buried in noise and
have SNR below —20dB. The PDR/LRMAP and the GLR were run
on each noisy spectrum, using one dictionary Dyy = X~ 2 HR per
spectrum (there is one noise matrix X per spectrum; an example of
the noise variances involved in the diagonal of X is shown if Fig. 4,
top). The FA rate is 0.01 for both tests. Fig 3(c) shows in white the
location of the spectra which have been detected using GLR, and
Fig 3(d) shows the equivalent for the PDR/LRMAP. At the same
FA, the GLR has rejected 779 in 146 cases, while the PDR/LRMAP
has detected at least one significant spectral feature in 304 spectra.
We finally turn to detection using spatial dependencies. The rel-
evance of the approach is illustrated on a synthetic bright (weighted)
spectrum x, = DB, + €, where € ~ .47(0,1) and 8, is a sparse pa-
rameter vector of only 4 non-zero components (corresponding to
one step, one smooth global oscillation, plus two lines). The neigh-
bor spectrum is taken with parameters 6 » = 0.56,,. The factor 0.5
is introduced in order to make model (17) only approximately accu-
rate and this experiment slightly more realistic, as in practice neigh-
bor spectra will not have the same parameters. The MUSE noise
model displayed in Fig.4 top was used to simulate noisy data. The
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(a) Noisy MUSE subcube : Absolute (b) SNR of each spectrum.
value of the mean over wavelengths
(logscale).

5 10 15 20 2% 3 & A 45 5

(c) Detection using the GLR (d) Detection using the PDR/LRMAP

Figure 3: Compared detection performances of PDR/LRMAP
and GLR on a simulated MUSE datacube.

SNR corresponding to the two convolved spectra are —20.9dB and
—26.9dB respectively. The strictly sparse parameter vectors consid-
ered here allow us to compare the performance of the proposed de-
tection tests with those of Oracles, which we define as follows. The
Oracle considering only the faint spectrum (Oracle 1 for short) has
knowledge of NZ*, the support of 8 ¢ (which is the same as that of
6,), but not of the amplitudes, which are estimated by least squares.
Denoting by Dz« the restriction of D to the column correspond-
ing to NZ*, this leads to QO,,f = (Di\Tz*DNzx)*lDth*&f, and to
a spectrum estimate %o, y = DNz- Qon - This estimate can be used
in a matched filter-like test where the model is: x = 30r., rtTe under
4 and x = € under 4. This yields ffXO,‘f — %X’Or’ FRorf 22{‘] Y.
The ROC of the Oracle considering only the faint spectrum is indeed
an upper bound to any realizable detection test which considers this
data spectrum independently from others. Consider now the case of
an Oracle which estimates the parameter amplitudes using x;, (Or-
acle 2). Since both parameters 6 ¢ and 0, are similar, the resulting
estimate will still be meaningful, up to a scaling, for the faint spec-
trum. This leads to an estimate Q/Onf = (Di\lz*DNz*)lei\IZ*)—‘b’

and to a spectrum estimate £}, = Dz Q’On - Since the bright
spectrum is relatively less noisy than the faint one, we expect the
Oracle 2 to perform better than Oracle 1.

Turning now to the numerical results in Fig.4, the ROC ob-
tained when considering contiguous spectra as independent (’First
Round Detection”) are compared for the GLR (green crosses),
PDR/LRMAP (blue stars), and Oracle 1 (red stars). The
PDR/LRMAP and GLR were set to a false alarm of 0.01 (n =4.72).
As expected, the LRMAP is superior to the GLR, and Oracle 1 is su-
perior to both tests. As a second round detection, we implemented
the detection test as in eq.(18), where )jf was estimated by a MP
estimate of x;, with threshold n = 4.72. The resulting ROC is plot-
ted in cyan stars. The improvement w.r.t. the PDR/LRMAP tests is
significant and interestingly, the corresponding ROC is even better
than the ROC of Oracle 1.

6. CONCLUSIONS

We pointed out some connections existing between sparse estima-
tion and detection tests. In particular, we showed the connection be-
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Figure 4: Top : Example of noise variances for a MUSE spec-
trum. Bottom : compared ROC by considering contiguous spec-
tra as independent ("First Round Detection”) and by exploiting
spatial dependencies ("Using neighbor spectrum”).

tween soft thresholding detection test statistics and PDR. Another
test, a LR using the MAP estimate was proposed. These detection
tests were then set in order to take advantage of a redundant dictio-
nary. They were applied to astrophysical hyperspectral data, using
a dictionary specifically designed for such spectra. We showed that
the proposed tests outperform the GLR. Finally, an improvement of
the proposed detection method, which takes advantages from spa-
tial dependencies, was discussed and illustrated in a toy case. In
practice indeed, hyperspectral neighbor spectra have more complex
relationship than assumed here, and the total Pr4 when using two
successive tests must be worked out. These points will be investi-
gated in further works.
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