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ABSTRACT
A new time-domain adaptive algorithm is proposed for blind identi-
fication of single-input multiple-output systems that is based on the
cross-relation (CR) method. The proposed algorithm novelly ex-
ploits the affine projection principle to minimize the CR error. As
a result, a cost function is minimized that differs from the one used
in existing CR based adaptive algorithms. A major advantage of
the proposed multichannel affine projection algorithm (MCAPA) is
that the affine projection order can be used to control the tradeoff
between the rate of convergence and computational complexity. In
an experimental study, MCAPA is compared with two recently de-
veloped adaptive algorithms, i.e., the low-cost multichannel least-
mean-square (MCLMS) and high-performance multichannel New-
ton (MCN) algorithms. The results show that MCAPA converges
faster than MCLMS with a computational complexity that is signif-
icantly lower than MCN, thereby increasing the applicability of the
CR method.

1. INTRODUCTION

Blindly identifying single-input multiple-output (SIMO) acoustic
systems has become an important research topic with applications
in dereverberation, source localization and tracking [1]. Key char-
acteristics of the blind system identification problem is that neither
the source nor channels are known in advance. It is a challenging
problem as the channels usually exceed thousand finite impulse re-
sponse coefficients and may be time-varying.

The cross-relation (CR) method [2], was one of the first meth-
ods proposed to blindly identify a SIMO system and has served as
the foundation for several algorithms. The CR method is based on
eliminating the unknown input from the multiple input-output re-
lations and uses only second-order statistics (SOS) of the output
signals. The unknown SIMO system is identified by minimizing
the CR error. Other SOS methods for blind SIMO system identifi-
cation are for example subspace methods [3, 4] and the prediction
error method [5]. It should be noted that the prediction error method
assumes that the source signal consists of an independent and iden-
tically distributed random sequence, and is therefore not directly
applicable when dealing with speech, which is our signal of inter-
est. In [6, 7] solutions have been presented to relax the assumption
on the source signal.

Adaptive time-domain algorithms have been derived based on
the CR error, e.g., the multichannel least-mean-square (MCLMS)
and multichannel Newton (MCN) algorithms [8]. The main advan-
tage of adaptive algorithms is their ability to track time-varying
SIMO systems. In addition, computational efficient frequency-
domain algorithms have been developed. Specifically, a frequency
domain version of a block-based MCLMS has resulted in the mul-
tichannel frequency domain least-mean-square (MCFLMS) algo-
rithm [9]. The normalized MCFLMS (NMCFLMS) derived in [9]
is an attempt to combine the low complexity of the MCFLMS ap-
proach and the fast convergence of the MCN. It should be noted
that various approximations are made throughout the derivation of
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Figure 1: Illustration of an acoustic SIMO system.

the NMCFLMS algorithm and that the convergence speed of the
NMCFLMS is generally lower than that of the MCN [9].

In this contribution we focus on time-domain adaptive algo-
rithms for blind SIMO system identification. As shown in Section 4,
the rate of convergence of the MCLMS algorithm is highly depen-
dent on the sample correlation coefficient of successive input signal
vectors. Affine projection algorithms [10] have been proposed to
alleviate this dependency. In this paper, we novelly derive an affine
projection algorithm for the blind case of multichannel SIMO sys-
tem identification. Experimental results demonstrate that the rate
of convergence is slower than MCN but faster than MCLMS. It is
also shown that the performance of the multichannel affine projec-
tion algorithm (MCAPA) is less data dependent than the MCLMS
algorithm.

This paper is organized as follows. In Section 2 we define the
signal model and briefly outline the MCLMS and MCN algorithms.
In Section 3 we derive the MCAPA algorithm and we discuss its
computational complexity. Finally, the performance of the MCAPA
is compared with the performance of the MCLMS and MCN algo-
rithms in Section 4.

2. SIGNAL MODEL AND EXISTING ADAPTIVE CROSS
RELATION METHODS

For an M -channel SIMO system as shown in Fig. 1, the mth chan-
nel impulse response with L coefficients can be denoted as

hm = [hm,0 hm,1 . . . hm,L−1]
T , (1)

for m = 1, 2, . . . ,M , and the mth sensor signal can be expressed
as

xm(n) =

L−1∑
l=0

hm,l s(n− l) + bm(n), (2)

where s(n) is the source signal and bm(n) is the additive noise. The
additive noise is assumed to be zero-mean and uncorrelated with the
source signal.
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The problem of blind SIMO system identification is to find h =
[hT

1 hT
2 . . . hT

M ]T using only the received signals xm(n). Hence,
given the received signals, a unique solution to h should be obtained
up to a non-zero scale factor across all channels. This scale factor
is irrelevant in most of acoustic signal processing applications.

For the development of adaptive CR algorithm we first define
the a priori error at discrete time n that is associated with the kth
and mth channel impulse responses as

emk(n) = xT
m(n)ĥk(n− 1)− xT

k (n)ĥm(n− 1). (3)

Existing adaptive CR algorithms are based on minimizing the total
a priori squared-error defined as

ξ(n) =

M−1∑
m=1

M∑
k=m+1

e2mk(n), (4)

where we excluded the cases where emm = 0 for m ∈
{1, 2, . . . ,M} and count the pairs emk = −ekm only once. With a
unit-norm constraint enforced on ĥ(n− 1) the normalized a priori
error is given by

ẽmk(n) =
emk(n)

‖ĥ(n− 1)‖
, (5)

where ‖ · ‖ denotes `2 vector norm. Accordingly, the cost function
to be minimized can be defined as

J(n) =

M−1∑
m=1

M∑
k=m+1

ẽ2mk(n) =
ξ(n)

‖ĥ(n− 1)‖2
, (6)

for which the optimal solution ho is given by

ho = argmin
h
E[J(n)] subject to ‖h‖2 = 1, (7)

where E{·} denotes the mathematical expectation and the unit-
norm constraint is used to avoid trivial solutions such as h =
0ML×1, where 0ML×1 is a null vector of length ML. Other con-
straints can also be used to avoid trivial solutions (see for exam-
ple [8, 11]).

According to Xu et al. [2], the following two conditions are
necessary and sufficient for blindly identifying a SIMO system us-
ing the CR method:
1. The channel transfer functions do not share any com-

mon zeros, i.e., the polynomials formed by hm

(1 ≤ m ≤M ) are co-prime;
2. The autocorrelation matrix of the input signal

Rss = E{s(n)sT (n)} is of full rank, where
s(n) = [s(n), s(n− 1), . . . , s(n− L+ 1)]T , such that
SIMO system can be fully excited.
For the MCLMS algorithm the update equation for ĥ is given

by [8]:

ĥ(n) = ĥ(n− 1)− µMCLMS∇J(n)

= ĥ(n− 1)− 2µMCLMS

‖ĥ(n− 1)‖2
[
R̃(n)ĥ(n− 1)− J(n)ĥ(n− 1)

]
,

(8)

where∇J(n) is the gradient vector of J(n) with respect to ĥ(n−1)
and R̃(n) is the instantaneous estimate of

R =



∑
m 6=1

Rxmxm −Rx2x1 · · · −RxMx1

−Rx1x2

∑
m 6=2

Rxmxm · · · −RxMx2

...
...

. . .
...

−Rx1xM −Rx2xM · · ·
∑

m 6=M

Rxmxm


(9)

of size ML × ML where Rxmxk is the cross-correlation ma-
trix between xm(n − 1) and xk(n − 1) given by Rxmxk =

E{xm(n)xT
k (n)}. If the channel estimate is always normalized

after each updating iteration, (8) can be written as [8]

ĥ(n) =
ĥ(n− 1)− 2µMCLMS[R̃(n)ĥ(n− 1)− ξ(n)ĥ(n− 1)]∥∥∥ĥ(n− 1)− 2µMCLMS[R̃(n)ĥ(n− 1)− ξ(n)ĥ(n− 1)]

∥∥∥ .
(10)

Here ĥ(n− 1) is initialized as ĥm(0) = [1/
√
M 0 . . . 0]T , m =

1, 2, . . . ,M such that ‖ĥ(0)‖2 = 1.
While the MCLMS algorithm with unit-norm constraint can

converge in the mean to the desired channel impulse responses the
main difficulty is the selection of the step size µMCLMS. As pointed
out in many studies, there is a trade-off between the amount of ex-
cess mean-squared error, the rate of convergence, and the ability of
the algorithm to track changes in the system. In order to obtain a
good balance of these competing design objectives, the unit-norm
constrained MCN algorithm with a variable step size during adap-
tation was derived in [8]. For the MCN algorithm the update of the
estimated impulse responses is given by [8]

ĥ(n) = ĥ(n− 1)− E−1{∇2J(n)}∇J(n), (11)

where∇2J(n) is the Hessian matrix of J(n) with respect to ĥ(n−
1). With some approximations the unit-norm constrained update
equation can be written as [8]

ĥ(n) =
ĥ(n− 1)− 2ρV−1(n)[R̂(n)ĥ(n− 1)− ξ(n)ĥ(n− 1)]∥∥∥ĥ(n− 1)− 2ρV−1(n)[R̂(n)ĥ(n− 1)− ξ(n)ĥ(n− 1)]

∥∥∥ ,
(12)

where V(n) = 2R̂(n) − 4ĥ(n − 1)ĥT (n − 1)R̂(n) − 4R̂(n)

ĥ(n − 1)ĥT (n − 1) approximates E{∇2J(n)}, ρ (0 < ρ < 1)
denotes the step size that is commonly chosen close to 1, and R̂(n)

is an estimate of (9) computed using R̂(n) = λ R̂(n− 1)+ R̃(n),
where λ (0 < λ < 1) is a forgetting factor.

3. AFFINE PROJECTION ALGORITHM FOR
MINIMIZATION OF THE CR ERROR

In Section 3.1 the MCAPA is derived for M = 2. The algorithm is
then generalized for M ≥ 2 in Section 3.2.

3.1 Two Channel Case (M = 2)

Let us denote the estimate of h(n− 1) at time n by ĥ(n− 1). We
can formulate the criterion for designing an affine projection filter as
one of optimization subject to multiple constraints. Specifically, we
minimize the squared Euclidean norm of ĥ(n)− ĥ(n− 1), subject
to a set of P + 1 constraints, i.e.,

qT (n− p) ĥ(n) = 0, for p = 0, 1 . . . , P − 1, (13)

and the unit-norm constraint avoiding the trivial null solution

ĥT (n)ĥ(n) = 1, (14)

where for M = 2

ĥ(n) =
[
ĥT
1 (n) ĥT

2 (n)
]T
,

q(n) =
[
xT
2 (n) −xT

1 (n)
]T
.

In other words, the requirement is to cancel P a posteriori CR errors
and to satisfy the unit-norm constraint. Note that the definition of
the vector q and the constraints in (13) are different from those
found in the classical APA. In the following, it is assumed that the
projection order P is smaller than the channel lengthL, i.e., P < L.
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Using Lagrange multipliers, we can write the unconstrained
cost function as

J(n) =
∥∥∥ĥ(n)− ĥ(n− 1)

∥∥∥2
+

P−1∑
p=0

λp q
T (n− p) ĥ(n) + λn

[
ĥT (n)ĥ(n)− 1

]
, (15)

where λp with p ∈ {0, 1, . . . , P − 1} and λn are the Lagrange
multipliers.

Taking the gradient of J(n) with respect to ĥ(n) and equating
the result to zero, we obtain:

2
[
ĥ(n)− ĥ(n− 1)

]
+

P−1∑
p=0

λpq(n− p) + 2λnĥ(n) = 0, (16)

where 0 = [0 . . . 0]T . The latter expression can be rewritten as

ĥ(n) =
1

1 + λn

[
ĥ(n− 1)− 1

2
QT (n)λ

]
(17)

where for M = 2

Q(n) =


xT
2 (n) −xT

1 (n)
xT
2 (n− 1) −xT

1 (n− 1)
...

...
xT
2 (n− P + 1) −xT

1 (n− P + 1)

 ,
λ = [ λ0 λ1 . . . λP−1 ]

T
.

Left multiplying both sides of (17) with Q(n) of size P × 2L

and using the fact that Q(n)ĥ(n) = 0 we deduce that

1

2
λ =

[
Q(n)QT (n)

]−1

e(n), (18)

where

e(n) = Q(n)ĥ(n− 1) (19)

is the a priori CR error vector of length P . By substituting (18) in
(17) we obtain

ĥ(n) =
1

1 + λn

[
ĥ(n− 1)−Q†(n)e(n)

]
, (20)

where Q†(n) = QT (n)
[
Q(n)QT (n)

]−1
is the right inverse of

Q(n).
The first term at the right-hand side of (20) is a scalar, therefore

it will not affect the convergence rate or tracking of the algorithm.
Rather than computing λn to satisfy the unit-norm constraint in (17),
we update ĥ(n− 1) using

ĥ(n) =
ĥ(n− 1)−Q†(n) e(n)∥∥∥ĥ(n− 1)−Q†(n) e(n)

∥∥∥ . (21)

Finally, we control the adaptation in the determined search di-
rection by adding a step size parameter µMCAPA (0 ≤ µMCAPA ≤ 2)
to the update, yielding

ĥ(n) =
ĥ(n− 1)− µMCAPA Q†(n) e(n)∥∥∥ĥ(n− 1)− µMCAPA Q†(n) e(n)

∥∥∥ . (22)

It should be noted that (22) for P = 1 is not equivalent to the
MCLMS algorithm that is derived from a different criterion.

3.2 Multichannel Case (M ≥ 2)
ForM channels there areM(M−1)/2 independent cross-relations.
We can extend the matrix Q(n) to include all cross-relations in the
following way:

Q(n) =


C1(n)−D1(n)
C2(n)−D2(n)

...
CM−1(n)−DM−1(n)

 , (23)

where

Cm(n) =


0 · · · 0 Xm+1(n) 0 · · · 0
0 · · · 0 Xm+2(n) 0 · · · 0
...

. . .
...

...
...

. . .
...

0 . . . 0︸ ︷︷ ︸
(m−1)L

XM (n) 0 · · · 0︸ ︷︷ ︸
(M−m)L

 , (24)

and

Dm(n) =


0 · · · 0 Xm(n) 0 · · · 0
0 · · · 0 0 Xm(n) · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0︸ ︷︷ ︸
mL

0 0 · · · Xm(n)

 ,
(25)

where Xm(n) = [xm(n)xm(n− 1) . . . xm(n− P + 1)]T . The
matrix Q(n) is of size PM(M − 1)/2 × ML and the matrices
Cm(n) and Dm(n) are of size P (M − m) ×ML. Because all
cross-relations are independent, the rows of Q(n) are independent
and therefore Q(n) is of full row rank.

3.3 Regularization
When the variance of the additive noise bm(n) ∀m is small the
inversion of the matrix product Q(n)QT (n) may give rise to nu-
merical difficulties. Therefore, we modify that product by adding
to it a regularisation term δI, where δ is a small positive constant
and I the identity matrix of size PM(M −1)/2×PM(M −1)/2.
Introducing this modification into Q†(n) yields

Q†(n) = Q(n)
[
Q(n)QT (n) + δI

]−1

. (26)

3.4 Computational Complexity
The computational complexity of the MCAPA depends on the pro-
jection order P , the number of channels M and the channel length
L. For P = 1 the computational complexity of the MCAPA is ap-
proximately equal to that of the MCLMS algorithm. The main com-
putational load of the MCAPA is the computation of the inverse of
the matrix Q(n)QT (n) + δI of size PM(M − 1)/2×PM(M −
1)/2, which has a complexity O(P 3[M(M − 1)/2]3). The main
computational load of the MCN algorithm is the computation of the
Hessian that includes the inversion of a ML ×ML matrix with a
complexityO(M3L3). Hence, the main complexity of the MCAPA
is lower than that of the MCN when P (M − 1)/2 < L. An illus-
trative example is given in Section 4.2.

4. PERFORMANCE EVALUATION

The performance of MCAPA is now compared to MCLMS and
MCN through Monte Carlo simulations in a blind multichannel sys-
tem experiment. First the performance measures are described in
Section 4.1. Secondly, the results of three evaluations are described
in Sections 4.2 and 4.3.

The step sizes used for MCLMS and MCAPA were respectively
µMCLMS = 0.025 and µMCAPA = 0.5, while the parameters for MCN
were ρ = 0.5 and λ = 0.98. The regularization parameter δ used
for the MCAPA and MCN algorithms was set experimentally to
10−8.
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4.1 Performance Measures
The normalized root mean square projection misalignment (NRM-
SPM) in decibels is used as a performance measure of the system
estimation accuracy and is given by [8]

NRMSPM(n) = 20 log10

 1

‖h‖

√√√√ 1

NMC

NMC∑
i=1

‖ξ(i)(n)‖2

 ,
(27)

where NMC is the number of Monte Carlo runs, the index (·)(i)
denotes the value obtained for the ith run, and

ξ(n) = h− hT ĥ(n)

ĥT (n)ĥ(n)
ĥ(n) (28)

is the projection misalignment vector [12] at time n. By projecting
h onto ĥ and defining a projection error the intrinsic misalignment
of the channel estimate is taken into account and therefore disre-
gards an arbitrary gain factor [12]. The results in the subsequent
subsections are computed using NMC = 100.

Finally, the rate of convergence is measured by the minimum
number of samples required to reach a given NRMSPM, i.e.,

Q(ε) = argmin
n
{NRMSPM(n) < ε} , (29)

where ε denotes the desired performance level in dB.
The additive noise is i.i.d. zero-mean Gaussian, and the speci-

fied SNR is defined as

SNR =
σ2
s‖h‖2

Mσ2
b

, (30)

where σ2
s and σ2

b are the signal and background noise powers, re-
spectively.

4.2 System condition
For the first evaluation the source signal consists of a zero-mean
Gaussian random sequence of 5 seconds (sampling frequency fs =
8 kHz) and the SNR = 50 dB. Here two systems (M = 3 and
L = 16) were used that consist of random channels with coeffi-
cients drawn from a zero-mean Gaussian distribution. The num-
ber of near-common-zeros (NCZ) for both systems were computed
using the generalized multichannel clustering algorithm developed
in [13] with a tolerance of 10−3. The number of NCZ of the first
system is zero while the number of NCZ for the second system is
six, indicating that the first system is well-conditioned and the sec-
ond system is ill-conditioned. The well-conditioned system was
changed to the ill-conditioned system at n/fs = 2.5 seconds. The
systems were identified using the proposed MCAPA with projec-
tions order P ∈ {1, 2, 4} and the MCLMS and MCN algorithms.
The NRMSPM is shown in Fig. 2. As expected, it can be seen
that the rate of convergence of all three algorithms is affected by
the channel conditioning. More importantly, we observe that the
MCAPA with P > 1 converges faster than MCLMS but slower than
MCN, and that the rate of convergence of the MCAPA is increasing
for larger projection orders. Following our analysis in Section 3.4,
the main complexity of the MCAPA for this example withM = 3 is
(1 − P 3/L3) × 100%, smaller than that of MCN when P 3 < L3.
For P = 4 and L ≥ 16 we therefore reduce the computational
complexity by more than 99.6%.

4.3 Rate of convergence
We now analyse the rate of convergence by computing the min-
imum number of iterations required to reach a given NRMSPM.
Our objective is to study i) how the sample correlation coefficient
of the source affects the rate of convergence and ii) the influence
of the projection order P on the rate of convergence. The source
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Figure 2: The NRMSPM of the MCLMS, MCAPA, and MCN al-
gorithms (SNR=50 dB).
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Figure 3: Minimum number of samples required for the MCLMS,
MCAPA, and MCN algorithms to reach a threshold ε (SNR=50 dB).

signal consists of a zero-mean Gaussian random sequence and the
SNR = 50 dB. Here the same well-conditioned system as described
in the previous subsection was used. The sample correlation coef-
ficient was increased by passing the source signal through an au-
toregressive model of order one, i.e., G(z) = (1 + 0.95 z)−1. The
results shown in Fig. 3 are obtained using the well-conditioned sys-
tem and demonstrate that the rate of convergence for the MCLMS
algorithm degrades significantly when the sample correlation coeffi-
cient of the source is increased. The rate of convergence of MCAPA
and MCN are only moderately affected by the increased correlation.

The influence of the projection order P on the rate of conver-
gence for the aforementioned correlated source signal was studied.
In Fig. 4 the number of samples required to reach an NRMSPM
of −20 dB when using the well-conditioned system are depicted
for the MCLMS, MCAPA, and MCN algorithms. From the re-
sults for the MCAPA we conclude that the time it takes to reach
an NRMSPM of −20 dB decreases when the projection order P
increases. Moreover, we observe that for the considered test sce-
nario the MCAPA with P = 6 converges almost as fast as the MCN
algorithm to an NRMSPM of −20 dB.
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Figure 4: Minimum number of samples required to reach an
NRMSPM of −20 dB for the MCLMS, MCAPA (with P =
1, 2, . . . , 8), and the MCN algorithms (SNR=50 dB).

5. CONCLUSIONS

Existing adaptive algorithms for blind SIMO system identification
have either a low computational complexity but converge relatively
slowly, such as MCLMS, or exhibit extremely high computational
complexity but converges rapidly, such as MCN. Furthermore, their
complexity scales significantly with increasing number of channels
and channel coefficients, making the high performance algorithms
usually impractical. Here we have derived a new adaptive algo-
rithm for blind SIMO system identification which novelly exploits
the affine projection principle to minimize the CR error. Results
demonstrate the advantage of the proposed MCAPA in that it pro-
vides a controllable tradeoff between the computational complexity
and rate of convergence.
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