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ABSTRACT
In this paper, the problem of MIMO precoding is addressed
for the case of single user, frequency selective wireless chan-
nel. Based on Bezout identity, two robust precoder designs
are proposed that aim to inverse the effects of channel In-
tersymbol Interference (ISI) under two different scenarios
of imperfect channel knowledge at the transmitter side. In
the first one, specific statistical quantities of the channel are
known at the transmitter while in the second one, a worst
case scenario is adopted assuming that channel uncertainty
falls within a given bounded set. Using standard optimization
tools, both precoders are expressed in closed forms which are
applicable for a wide range of channel conditions w.r.t. cor-
relation in space and/or time, antenna numbers etc. Simula-
tion results have shown that the proposed precoders perform
comparably to the perfect channel knowledge case, offering
at the same time some benefits in required transmitted power.

1. INTRODUCTION

In the last fifteen years MIMO communications have at-
tracted a great research attention mainly because of the im-
portant performance improvement that can be achieved in the
presence of multipath fading environments [1]. Typically,
the performance of a MIMO system is evaluated under one
of two different perspectives, either analytically or through
simulations. In the first one, some kind of system capacity
measure is analyzed and the fundamental limits of the system
are explored. In the second one, the performance is investi-
gated under a practical viewpoint in terms of complexity and
BER of the employed processing techniques [2]. In [3], [4]
some interesting conclusions are summarized for a variety
of different assumptions regarding wireless channel condi-
tions and characteristics, e.g. fades dependencies in time and
space, time horizon analysis, amount of Intersymbol Inter-
ference (ISI) etc.

ISI is a form of signal distortion that is mainly caused
by multipath transmission, limited available bandwidth and
user mobility. In the presence of ISI, the quality of the trans-
mission can be heavily degraded since the currently transmit-
ted symbol may interfere with several subsequent transmitted
symbols. In downlink transmission systems, ISI can be effec-
tively equalized at receiver side. However, notable receiver
simplification and power consuming benefits result when ISI
is handled at transmitter side. Two main approaches are
widely employed to combat ISI at transmitter side. In the first
one, multicarrier transmission is performed, e.g., by employ-
ing OFDM modulation while in the second one, the chan-
nel effects are pre-equalized (precoded) before single-carrier
transmission is carried out [5], [6]. Especially in the latter

case, the available Channel State Information (CSI) in any of
the two communication ends plays a key role [7].

Channel State Information at the Receiver (CSIR) is usu-
ally obtained via training sequences and can be considered
sufficiently accurate in most cases. However, this is not the
case with Channel State Information at the Transmitter side
(CSIT). Usually, perfect CSIT is not a trivial task in practice.
Hence, precoder design has to be performed under imperfect
or partial CSIT in a way that it remains robust under some
kind of channel state uncertainties. Typically, robust pre-
coding is classified in two main categories. In the first one,
uncertainty is modeled as a random process and the whole
design aims to guarantee a certain system performance on
average. A plenty of relevant precoding designs have been
proposed in literature particularly when Mean Square Error
(MSE) criterion is used as a cost function [8], [9], [10]. In the
second category, it is assumed that channel uncertainty at the
transmitter is bounded within a range and no further restric-
tions are made for noise behavior [11]. Precoders of this cat-
egory tend to be somewhat conservative and possible power
consuming. However, a certain performance level is guar-
anteed for any possible channel uncertainty. In this work,
two novel MIMO precoding schemes are proposed that aim
to eliminate ISI at transmitter side. The optimization crite-
rion appeared in [12] is adopted where the Bezout identity is
used for channel inversion but the precoding problem is in-
vestigated for the two representative cases of imperfect CSIT
described above. Using standard tools of optimization the-
ory, the proposed precoders are expressed in closed forms
which are applicable for a wide range of channel conditions
w.r.t. time and space correlation with relatively low power
consumption.

The rest of the paper is organized as follows: The system
model and the addressed problem are described in Section
2 and emphasis is given on Bezout-based precoding and the
assumed imperfect CSIT case. The proposed FIR precoders
are presented in Section 3 and their performance is shown in
Section 4. Finally, conclusions are drawn in Section 5.

Notation: In the following, lowercase bold letters denote
vectors and uppercase bold letters denote matrices. (·)T ,
(·)H , tr(·) and A

1
2 denote transpose, Hermitian transpose,

matrix trace and the square root of matrix A, respectively.
∥.∥ denotes the euclidean norm when it is applied on vec-
tors and the associated induced norm when it is applied on
matrices. ⋆ is the convolution operator, ⊗ is the Kronecker
product operator, δ (.) is the Dirac function and E{.} is the
expectation operator.
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2. SYSTEM MODEL AND PROBLEM STATEMENT

2.1 System Model and Bezout Precoding
A MIMO frequency selective system is considered with Nt
transmit antennas and Nr receive antennas with Nr < Nt . A
d-order quasi-static model is assumed for the wireless chan-
nel, whose discrete time impulse response is described by a
set of Nr ×Nt complex matrices H[0], . . .H[d]. When a FIR
precoder F(n) of order r is employed at the transmitter side
(w.l.o.g. r is equal to d), the input-output relation in time
instant n is

y(n) =H(n)⋆F(n)⋆x(n)︸ ︷︷ ︸
s(n)

+w(n), (1)

where x(n) ∈ CNr denotes the vector of information sym-
bols, w(n) ∈ CNr is the Zero Mean Circularly Symmetric
Complex Gaussian (ZMCSCG) vector of additive noise with
i.i.d. elements of zero mean and variance σ2

w and s(n) =
F(n) ⋆x(n) = ∑r

k=0F[k]x[n− k] is the transmitted vector of
symbols. Equation (1) can be expressed in Z -plane as

y(z) =H(z)F(z)x(z)+w(z),

where F(z) = ∑r
k=0F[k]z

−k and H(z) = ∑d
k=0H[k]z−k. Fig-

ure 1 illustrates the overall system model.

F(z) H(z)

x(z)

s(z)

y(z)

w(z)

Figure 1: System Model.

When perfect CSI is available at transmitter side, a Zero
Forcing (ZF) criterion can be adopted for complete ISI elim-
ination at the receiver side. In such a case, each antenna’s
received symbol is a delayed version of the corresponding
transmitted symbol [12], [13]

y j(n) = x j(n− k j)+w j(n), 1 ≤ j ≤ Nr. (2)

Moreover, the detection at the receiver side can be based on
the following criterion

x̂ j(n) = argmin
k∈Q

∥y j(n)− sk∥2,1 ≤ j ≤ Nr, (3)

where Q = {s1 . . .sM} is the available transmission set of
symbols. Nevertheless, providing transmitter with perfect
CSI is a difficult task. In a more common approach, each
channel tap is modeled as H[k] = H[k] + H̃[k], k = 0 . . .d,
where H[k] represents the long term channel evolution and
H̃[k] denotes the tap uncertainty. Generally, changes on H[k]
may be accurately tracked by the transmitter but regarding
H̃[k], only some kind of statistical knowledge is considered
possible. Clearly, in such a case, complete ISI elimination
is not possible. However, eq. (3) may be still used in the
receiver’s side for the detection of x̂ j(n).

A Bezout precoder is a ZF precoder that is based on the
usage of Bezout identity [13]. According to Bezout identity,
for every full rank Nr ×Nt (Nr < Nt ) rectangular FIR matrix
H(z), there is a Nt ×Nr FIR matrix F(z) such that

H(z)F(z) = diag(z−ki), 1 ≤ i ≤ Nr, (4)

where z−ki are integer delays. The only condition on H(z)
imposed by Bezout identity is that it should be left coprime
which is valid when ki ≥ 0 [14]. In the following subsec-
tion, Bezout identity is used to form an objective function
that quantifies ISI elimination by the proposed precoder de-
signs.

2.2 Objective Function
The mismatch between the ideal ZF impulse responses
E(n) = diag{δ (n− k1) . . .δ (n− kNr)} and the performance
of a precoder F(n) can be minimized by optimizing the fol-
lowing objective function [12]

J(F) = tr([Γ(H)F−E]H [Γ(H)F−E]), (5)

where all the precoder taps have been
stacked together in (r+1)Nt ×Nr block ma-
trix F =

[
[F[0]]T [F[1]]T . . . [F[r]]T

]T , E =[
[E(0)]T [E(1)]T . . . [E(d + r)]T

]T and

Γ(H) =



H[0] 0 · · · 0

H[1] H[0]
. . .

...
... H[1]

. . . 0

H[d]
. . . . . . H[0]

0 H[d]
. . . H[1]

...
. . . . . . . . .

0 · · · 0 H[d]


denotes the (d + r + 1)Nr × (r + 1)Nt block convolution
matrix. J(F) is a convex function since its Hessian ∇2J(F)
is positive semidefinite [15]. Moreover, J(F) = ∑Nr

j=1 J j(f j)

holds, where each convex function J j(f j) is given by
J j(f j) = ∥Γ(H)f j − e j∥2 and vectors f j, e j are the j-th
column vectors of matrices F and E, respectively. Hence,
the precoder design may be based on separated minimization
of each term J j(f j), j = 1 . . .Nr, instead of overall minimiza-
tion over J(F) and the following minimization problem is
formed

min
f j

∥Γ(H)f j −e j∥2, ∀ j = 1, . . . ,Nr. (6)

Clearly, when the convolution matrix is perfectly known
in the transmitter and Bezout precoding is applied, then
Γ(H)F = E holds and J(F) = 0. In such a case, the re-
sulting precoder is written as F =V−1UHE by using SVD
on Γ(H) =UΣVH .

3. PRECODER DESIGN USING IMPERFECT
CHANNEL KNOWLEDGE

In the following two subsections, the problem of eq. (6) is
solved using two different approaches, namely the Stochas-
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tic Robust Approximation (SRA) and the Worst-Case Robust
Approximation (WCRA) [15]. In SRA, the minimization
problem is solved over its expectation while in WCRA, a
worst-case approach is followed. In both cases, transmitter
possesses full knowledge of Γ(H) and only partial knowl-
edge of Γ(H̃), as described in Section 2.

3.1 Precoder Design using SRA
When SRA is used, the problem of eq. (6) is solved over its
expectation

min
f j

E
{∥∥Γ(H)f j −e j

∥∥2
}

∀ j = 1, . . . ,Nr. (7)

Given that Γ(H) = Γ(H) +Γ(H̃) and E
{

Γ(H̃)
}
= 0, the

problem of eq. (7) can be written in the following Least-
Square form

min
{f j}Nr

j=1

(
∥Γ(H)f j −e j∥2 +∥E

{
Γ(H̃)HΓ(H̃)

} 1
2
f j∥2

)
(8)

Equation (8) can be solved by setting its gradient equal to
zero. Thus, for j = 1 . . .Nr, the analytical solution has the
form

f j =
[
Γ(H)HΓ(H)+E

{
Γ(H̃)HΓ(H̃)

}]−1
Γ(H)He j. (9)

As it can be seen from eq. (9), only E
{

Γ(H̃)HΓ(H̃)
}

is nec-

essary for f j computation (Γ(H) is commonly considered to
be known). In most cases, the existence of such information
at transmitter side is a reasonable assumption. For example,
in case the entries of Γ(H̃) are considered i.i.d. random vari-
ables with NC(0,σ2) distribution, then E[Γ(H̃)HΓ(H̃)] will
be a (d+ r+1)Nr × (d+ r+1)Nr block identity matrix mul-
tiplied by a factor dNrσ2. In Subsection 3.3 a similar con-
clusion is made for a more generic channel model w.r.t. tap
and space correlation. In any case, the required knowledge
by eq. (9) is certainly a lower burden than full CSIT which
is required by Bezout precoder.

3.2 Precoder Design using WCRA
In WCRA design, the minimization of eq. (6) is performed
under a worst-case approach. Let Φ ⊆ C(d+r+1)Nr×(r+1)Nt

denotes the non-empty and bounded set of every pos-
sible matrix Γ(H). Given a feasible precoding vec-
tor f j, the worst-case error is defined as ewc(f j) =

sup
{∥∥Γ(H)f j −e j

∥∥ | Γ(H) ∈ Φ
}

. Precoder design in
WCRA aims to the following minimization

min
{f j}Nr

j=1

sup{∥Γ(H)f j −e j∥ | Γ(H) ∈ Φ}. (10)

The problem of eq. (10) can be solved by Norm Bound Error
method [15]. In such a case, uncertainty on Γ(H) is con-
sidered within a norm ball of radius α and set Φ is writ-
ten as Φ = {Γ(H) + Γ(H̃) | ∥Γ(H̃)∥ ≤ α}, α ∈ Z+. Let
eNBE

wc (f j) = sup{∥Γ(H)f j −e j +Γ(H̃)f j∥ | ∥Γ(H̃)∥≤α} be

the the worst-case error given precoding vector f j. It can be
easily shown that eNBE

wc is equal to eNBE
wc (f j) = ∥Γ(H)f j −

e j∥+ α∥f j∥ and it is attained for Γ(H̃) = αuvH where

u =
Γ(H)f j−e j
∥Γ(H)f j−e j∥

and v =
f j

∥f j∥ , given that Γ(H)f j − e j ̸= 0
and f j ̸= 0 [15]. Thus, the minimization problem of eq.
(10) can be written in the following Tikhonov Regularization
form with parameter α

min
{f j}Nr

j=1

∥Γ(H)f j −e j∥+α∥f j∥. (11)

Depending on the way the parameter α is specified by the
design, more emphasis may be given either on power con-
sumption or on channel effects mitigation. The analytical
solution of eq.(11) is attained by setting ∇eNBE

wc (f j) = 0

f j =
[
Γ(H)HΓ(H)+αI

]−1 Γ(H)He j. (12)

3.3 Precoding in the Presence of Tap and Space Corre-
lation
Clearly, both problems of eq. (8) and eq. (10) are examples
of Tikhonov Regularization problems. As it is well known in
optimization theory, Tikhonov Regularization does not pose
any restriction on the rank of the involved matrices, e.g. rank
of Γ(H̃) and Γ(H) in eq. (9) and eq. (12), respectively [15].
Hence, a noticeable advantage of the analytical solutions of
eq. (9) and eq. (12) is that the resulted precoders may be
efficiently applied in a wide range of channel conditions w.r.t.
spatial and time correlations. Under the common assumption
of independent and separable tap and spatial correlation, a
generic representation of the ISI channel H= [H[0] . . .H[d]]
in time domain is [16]

H=HG

(
R

T/2
d ⊗R

1/2
Nt

)
, (13)

where elements of HG follow i.i.d. NC(0,1) and matrices
Rd , RNt correspond to tap and transmit antenna correlation,
respectively. If the model of imperfect channel knowledge
that has been used so far is merged on eq. (13), H is de-
scribed as

H=
(
H+ H̃

)(
R

T/2
d ⊗R

1/2
Nt

)
where H

(
R

T/2
d ⊗R

1/2
Nt

)
and H̃

(
R

T/2
d ⊗R

1/2
Nt

)
correspond

to the known and partially known channel parts, respectively.
Thus, it can be easily shown that each (sub)diagonal of the
block-Toeplitz matrix E

{
Γ(H)HΓ(H)

}
equals to the sum

of corresponding (sub)diagonal of the matrix E
{
HHH

}
.

Hence, the only required knowledge by SRA precoder of eq.
(9) is related to matrices Rd and RNt .

4. SIMULATION RESULTS

In this section, simulation results are presented illustrating
the performance of the two proposed precoders. A 8 × 2
MIMO structure is used as a baseline configuration. How-
ever, it should be noted that extensive experiments have been
contacted for several antenna configurations leading to sim-
ilar conclusions as the ones presented here. The order of
both the precoder and the ISI channel is d = r = 4. Each
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channel tap k, k = 0 . . .d, is generated as the sum of two
ZMCSCG matrices H[k] and H̃[k] with elements that fol-
low i.i.d. NC(0,1) and NC(0,σ2

H̃
) distributions, respec-

tively. The matrix H̃ is refreshed 1000 times faster than H.
An exponential model is used for transmit antenna correla-
tion, i.e., RNt (i, j) = ρ |i− j|

Nt
∀i, j = 1 . . .Nt and 0 ≤ |ρNt | ≤ 1.

Moreover, a Toeplitz tap correlation matrix Rd is used where
the elements of the first column are specified by vector
p = [p0, p1, · · · , pd ]. In all figures, QPSK modulation is used

and SNR is defined as SNRdB = 10log10
tr(FFH )σ2

x
σ2

w
where the

variance of the transmitted symbols is equal σ2
x = 2.

In Fig. 2 and Fig. 3, the BER performance of SRA and
WCRA is shown for σ

H̃
= 0.1 and different cases of channel

correlation, respectively. More explicitly, besides the case
where elements of H are uncorrelated, three more cases are
examined. In the first one, only space correlation is consid-
ered with ρNt = 0.7. In the second one, low-correlation is
considered where tap and space correlation are specified by
ρNt = 0.35 and p = [1,0.35,0.25,0.2,0.1]T , respectively. Fi-
nally, in the third one, high-correlation is considered where
tap and space correlation are specified by ρNt = 0.7 and
p = [1,0.7,0.5,0.4,0.2]T , respectively.
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Figure 2: BER versus SNR for SRA precoder for σ
H̃
= 0.1

As it can be seen from Fig. 2 and Fig. 3, both SRA and
WCRA precoders perform closely to the perfect channel in-
version by Bezout precoder [12], [13], especially in the area
of low and medium SNRs. In the high SNRs area, the Be-
zout Precoder outperforms both SRA and WCRA since ISI
is the main cause of degradation and lack of perfect CSIT af-
fects notably the performance of the proposed schemes. As
regards the role of correlation, it seems that correlation re-
sults in performance degradation of both SRA and WCRA
precoders. As correlation becomes stronger, this degradation
becomes higher, and hence higher SNR values are required
for BERs with practical interest.

In Fig. 4 and Fig. 5, the SRA and WCRA transmitted
powers versus σ

H̃
are shown for different values of Nt and
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Figure 3: BER versus SNR for WCRA precoder for σ
H̃

=
0.1

three different cases of channel correlation, namely the un-
correlated case, the case where only space correlation exists
with ρNt = 0.7 and the case where space and tap correlation
exist with ρNt = 0.7 and p = [1,0.7,0.5,0.4,0.2]T .
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Figure 4: Precoder power versus σ
H̃

for SRA precoder

It can be seen that as the value of σ
H̃

increases, the power
of SRA and WCRA precoders either decreases or remains
almost the same. In other words, as the available CSIT gets
more inaccurate, the proposed precoders avoid to increase
the transmitted power in order to not amplify the residual ISI.
Such a degradation has been verified experimentally (as the
value of σ

H̃
increases). However the corresponding curves

have not been included due to space limitations. Moreover,
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the same conclusions hold true in the presence of channel
correlation with the only difference that a higher amount
of power is required as correlation becomes stronger, espe-
cially in the area of σ

H̃
≤ 0.2 where the proposed precoders

perform competitively. Clearly, as σ
H̃

→ 0, the SRA and
WCRA reduce to Bezout precoder. Hence, both SRA and
WCRA precoders offer a more balanced power management
as compared to Bezout Precoder which is considerable in the
case of correlated involved channels.
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Figure 5: Precoder power versus σ
H̃

for WCRA precoder

Finally, it should be noticed that ∥f j∥ minimization was
emphasized in the case of WCRA precoder. As it was men-
tioned in Section 3.2, parameter α is proportionally related
to the value of σ

H̃
. Here, a relatively high value was selected

for α , i.e., α = 5σ
H̃

. The role of parameter α and the way
it affects WCRA precoder performance is a subject of a rele-
vant future work.

5. CONCLUSIONS

In this paper two novel precoding schemes have been pre-
sented for the case of frequency selective channels in sin-
gle user transmission. In both schemes it has been assumed
that the transmitter has only imperfect channel knowledge,
which is in a statistical form for the first precoder and in
a channel worst-case form for the second precoder. Us-
ing Tikhonov Regularization theory closed form expressions
have been derived for both precoders. The new schemes turn
out to have competitive performance even under correlated
channels’ conditions and, furthermore, they offer savings in
required transmitted power. Finally, there have been pre-
sented simulation results which confirm the advantages of
the proposed schemes.
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