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ABSTRACT

Virtual MIMO systems depend on the exact cooperation
among the nodes. Since perfect synchronization will never
be feasible in practice, the impact of synchronization er-
rors on a virtual MIMO system is an intriguing problem.
Hence, we have investigated random synchronization errors
that have the order of magnitude of a symbol interval when
using eigenmode transmission.

Our closed-form results show that synchronization errors
will have an impact on the performance of MIMO systems.
In the low SNR regime small imperfections play virtually no
role. In contrast to that, in the high SNR regime significant
performance losses may be encountered due to the average
inter-stream interference.

1. INTRODUCTION

During the last few years MIMO and multi-user MIMO have
been the subject of vast interest. However, still not all de-
vices are capable of exploiting the MIMO gains as they are
equipped with only a single antenna. In order to let those
network nodes exploit MIMO advantages one has to include
cooperation among the user terminals (see [8], [1]). This is
what is referred to as virtual MIMO. In virtual MIMO sys-
tems at least one side of the transmission is a cluster of nodes
that cooperate such as if they were one single antenna array.
A virtual MIMO transmission basically consists of the three
phases depicted in fig. 1. During the first phase the data is dif-
fused from the source node to all nodes of the transmit cluster
which will take part in the transmission. The second phase is
dedicated to the actual virtual MIMO transmission between
the two virtual MIMO clusters. After this has finished, the
last phase is performed by distributed data decoding and data
forwarding to the receiver node.

Virtual MIMO brings some advantages at the cost of ad-
ditional practical impairments. The two main impairments
are carrier frequency offsets between the nodes of a cluster
and imperfect synchronization among the nodes of a cluster.
Our analysis is focused on the synchronization problem.

Since nodes suffer from unequal hardware, self-heating,
and environmental changes (e.g., temperature change),
clocks will never run perfectly synchronized. This problem
can be solved via suitable synchronization protocols on the
physical layer as well as on higher layers. For the physi-
cal layer, multiple synchronization techniques have been pro-
posed to achieve phase synchronization among all nodes of
a virtual MIMO cluster. In [2] an SNR gradient algorithm
has been proposed that uses a reference tone emitted by the
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Figure 1: The three phases of a full virtual MIMO trans-
mission — phase I: data diffusion; phase II: virtual MIMO
transmission; phase III: data decoding and forwarding

receiver. A very well-known technique is the firefly synchro-
nization as explained in [7]. Firefly synchronization is an ap-
plication of the coupled oscillator theory. Additionally, there
are also blind synchronization techniques (e.g., [6]).

The impairments of imperfect synchronization may be
mitigated by suitable channel estimation (see [5]). How-
ever, perfect synchronization will never be fulfilled in prac-
tice. For that reason Nguen et al. studied this problem in [3].
In contrast to that, we assume in our work that a physical
layer synchronization technique is already utilized. Thus we
focused on very small synchronization errors that can change
randomly. A similar research question has already been in-
vestigated in [4] for the case of space-time coding. We have
adopted and extended this synchronization error model in our
investigations on eigenmode transmission to gain an idea of
how imperfectness in synchronization may affect the perfor-
mance of a virtual MIMO system. Even though eigenmode
transmission assumes channel state information at the source
nodes it provides a fundamental benchmark of what can be
achieved in a virtual MIMO system.

Throughout the whole document we use the following
notations: Vectors are indicated by lower-case letters in bold
face. Capital letters in bold face refer to matrices. The opera-
tors *, T and M are used to indicate the complex conjugate, the
transpose and the Hermitian transpose of a variable, respec-
tively. In addition to the conventional matrix multiplication
we will also use the ® operator for the Hadamard (element
wise) product and the ® operator for the Kronecker product.
The vec(-) operator is used to return a vector which has all
the columns of the given matrix stacked one below the other.
Furthermore the tr(-) function computes the trace of a matrix,
i.e., the sum of its diagonal elements. A diagonal matrix is
obtained from a vector via the diag(-) operator. The expecta-
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Figure 2: Eigenmode transmission model with imperfect
synchronization at transmitter side

tion operator is denoted by E{-}.

The rest of the paper is organized as follows: In section 2
we describe the used transmission model and explain the
synchronization error model for virtual MIMO nodes. Sec-
tion 3 derives the SINR values for each substream of a virtual
MIMO transmission as well as an upper bound for the overall
mutual information. Simulations of the theoretically derived
results are presented in section 4. Conclusions and further
research issues are given in section 5.

2. SYSTEM MODEL

This section describes the model of transmission and the
model of synchronization used throughout the subsequent
sections.

Phase differences between the nodes of a virtual MIMO
array can be considered as part of the channel. In this case the
problem reduces to the conventional channel estimation task.
Unfortunately there are types of synchronization problems
that may not be treated like this. This problem has already
been described in [4] in conjunction with space-time cod-
ing. We have adopted this model for our research in order to
examine imperfections in synchronization when transmitting
via eigenmode transmission.

Our investigations refer to phase II as shown in fig. 1.
Assume a set of nodes A7 = {1,...,Mr} and a set of nodes
AR ={1,...,Mr} which form a virtual MIMO array at the
transmitter side and at the receiver side, respectively. For the
sake of simplicity we will stick to synchronization imper-
fections only at the transmitter side and assume perfect syn-
chronization among the receive nodes. Note that this model
can easily be extended to an imperfectly synchronized vir-
tual MIMO array at the receiver side as well. Fig. 2 shows
the corresponding block diagram.

The transmitter uses gp(¢) as the pulse shaping function.
The receiver applies a matched filter (MF) to the received
signal. Hence after the MF the receiver samples the auto-
correlation function @g,(r) of gp(r). We assume that (1)
fulfills the Nyquist inter-symbol interference (ISI) criterion,
ie.,

1 k=0

kel 1
0 otherwise’ €& M

Qg (kTs) = {

where Tg is the symbol duration. In a synchronous system
(1) states that at time instant n there is no inter-symbol in-
terference from different time slots. Furthermore 7[n] :=
[T1[n] VT [n]]T is the vector of the random timing er-
rors at time instant n. The elements of 7[n] are drawn from
an arbitrary distribution so that |7, [n]| < ¢ and presumed to

805

be mutually independent. This allows us to define the vector

g(n,t(n)

= [@ge (nTs — T1[n]) Qoo (nTs — Tay [n])]T

Furthermore, we define the diagonal matrix

G(n,7[n]) := diag (g(n,t[n])).

The input-output relation of the discussed Virtual MIMO
system at time instant k is given by the following equation.

Yk = Y HG(n, olk])xlk —n] + nli] o)
n=0

In this equation x[k] € CMT*! and y[k] € CMr*! are the trans-
mit vector and receive vector, respectively. The channel is
assumed to be a flat-fading Rayleigh channel with channel
matrix H € CYR*M1  The additive white Gaussian noise is
denoted by the vector n[k] € CMrR*!. Its elements are inde-
pendent identically distributed with zero mean.

The maximum delay o is assumed to be much less than
a single symbol interval Tg, i.e., 0 < Ts such that

Yo “ng(*”TS - Tm["])‘
"ng(fm[o])’

As an example, fig. 3 shows the maximum possible delays of
a root-raised cosine pulse shape according to (3). Condition
(3) states that the interference caused by different time slots
is much less than the interference caused by the streams at
the same time slot. If this is true, the temporal interference
can be neglected and (2) can be simplified as follows.

<1, Vme[l,Mf]. @)

ylk| = HG(0, t[K])x[k] + n[k]

For notational convenience we drop all indices which leads
to (4)

y=HGx+n, 4)
Where G := diag(g) and g := g(0,7[k]) =
[P (= T1K) - e~ [K])]".

The focus of this work is eigenmode transmission.
Hence, we make use of the singular value decomposition
(SVD) of the channel matrix H = UXVH, Throughout this
document V is the (Mr, Mr)-matrix of right singular vectors,
U is the (Mg, Mg )-matrix of left singular vectors and X is the
diagonal (Mg, Mr)-matrix of singular values. We presume H
and G to be statistically independent.

When using V as a precoding matrix and U™ as a decod-
ing matrix in conjunction with (4) we obtain the following
input-output model.

$=\/3-U"Hx+h=,/;7ZV'GVs+h  (5)

Here P is the overall transmit power radiated by all the trans-
mitting nodes. For our investigations, we did not consider
the problem of optimal power loading so far. Hence, water-
filling was not included in the shown model.



3. SYNCHRONIZATION ERROR ANALYSIS

This section explains the analytical derivation of the signal-
to-interference-and-noise ratio (SINR) which limits the sys-
tem performance especially in the high SNR regime. The
first subsection shows the derivation of the SINR in the pres-
ence of synchronization errors, whereas the second subsec-
tion discusses the analytical results.

3.1 Derivation of SINR

Small imperfections in synchronization result in inter-stream
interference, which may be seen from the decoded symbol of
the i-th substream:

My
Si =4/ A% \/I, v;{GviS,' + V?G;Vgsg +n; (6)
(4

The term \/A; denotes the i-th singular value of H. The
i-th right singular vector is denoted by v;, ie. V =
[vi ... Vvup]. The channel H, the matrix G and the sym-
bols s; are assumed to be random and mutually independent.
As a result, this allows us to express the SINR of the i-th
subchannel:

SINR; = ———— (7

Here, p is the transmit SNR defined as p := P/Ny with Ny
being the noise power. The mean eigenvalue of the i-th sub-

channel is abbreviated by A= E{A;}. P, is the desired sig-
nal power and P, is the inter-stream interference power.

P = E{‘V?Gvisi‘z}
2
My
P, =E V?szsg

(=1

(£

In the following we will separate the influence of the channel
(v) and the impact of the synchronization errors (G). To this
end we consider the desired signal term P;. The signal power
is normalized to one. The derivation for the inter-stream in-
terference term P can be performed in a similar fashion.

At first we apply the vec(-) operator to P;.

P =E{|s;]*- vi'G v Gy}
=E{vec(v/'G"v!'Gv;) }

When utilizing the rule vec (bHAb) = (bT ® bH) vec(A)
three times the following expression is obtained.

P =E{u((G'®G") (viov) (viav))} ®
By converting the trace operator into the inner product of two

vec(+) operators and by applying the mixed-product property
of the Kronecker product (8) becomes:

P =E{vec" (GoG)vec ((v/v])® (vwi))} (9
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Recall that the matrix G is defined as a diagonal matrix and
does not depend on v;. Hence, it is not necessary to incor-
porate off-diagonal elements in (9) inside the second vec(-)
operator. Cutting out the diagonal elements in the next equa-
tion accounts for this observation.

P =E{g" @g"} E{diag (v/v]) @ diag (vo)}  (10)
We define the vector w; := v; © v} and the two second order
moment matrices Ry, := E {wiwlT} and Ry, :=E {ggT} to
obtain a more compact version of (10).

Py = vec! (Ryg) vec (Ry;) (11)

As mentioned above, the derivation for P, is very similar.
Thus, we skip it here and just give the result. To this end we
define the vector u; := v; ® Z?’I:T] i Ve and its second order

moment matrix Ry, := E {u;ull }. The P, term may thus be
expressed as:

P, = vect (Rgg) vee (Ruu;) (12)
The formula for the SINR of the i-th substream is obtained
by plugging (11) and (12) into (7):
vecT (Ryg) vee (Ry,w,)

vecT (Ryg) vee (Ryu;) + %4—_;

SINR; = (13)

Moreover, it is possible to write down the overall mutual in-
formation

My
I(p,g) =) log, (1+SINR;) (14)
i=1

Regarding (14) it has to be added that this is an upper bound
of the achievable mutual information. This is due to the fact
that we neglected the inter-symbol interference.

3.2 Discussion

By looking at (13) it is easy to see that in the high SNR
regime we obtain a constant signal-to-interference ratio
(SIR).

vec! (Rge) vee (Ry,)

SINR; =
"7 vecT (Rge) vec (Ruu,;)

5)

As a consequence the maximum achievable throughput of a
communication system is limited even for high SNR values.
This SIR on the one hand depends on the channel via the
matrices R,,,,, and R,,,,;. On the other hand, the SIR depends
on the maximum synchronization error ©.

For a given number of transmit antennas and receive an-
tennas the matrices R,,, ,,; and R,,, ,; are constants if the chan-
nel statistics does not change.! We consider an extreme case
to get some information about R,,, ,, and Ry, .. Suppose
a perfectly synchronized transmit array is given or in other
words g = 1,1 is a vector of Mt ones. Hence, P =1 in
this case. Consequently we see that

Mt My

ZZ [RWiaWi]mﬁ =1

IThe exact values may be implementation dependent as a result of the
scaling ambiguity of the SVD.




The term P> vanishes in this case enforcing that the following
holds:

My Mt

ZZ [R“iv“i]m,n =0

m n

Furthermore, R, is symmetric and all diagonal elements
are positive.

4. SIMULATIONS

The purpose of this section is to show the performance of
eigenmode transmission under inaccurate synchronization
conditions. To this end we show the behavior of the indi-
vidual substreams and the approximate mutual information.

As shown in the previous section synchronization leads
to a constant SIR term in the high SNR regime. For our sim-
ulations, we chose a root-raised cosine pulse shape. The pre-
vious investigations are only valid if (3) holds. We chose the
left hand side of (3) to be strictly less than 0.1. Based on
that, we numerically computed the maximum allowed syn-
chronization error 7,,. The results are shown in fig. 3. When
using a roll-off factor of 0.5 a maximum positive or negative
delay of 0.1275 is allowed.

Given this result, we have simulated a system with Mt =
3 transmit antennas and Mg = 4 receive antennas that em-
ploys eigenmode transmission without water pouring. The
symbols are chosen from a QPSK constellation and are trans-
mitted over an uncorrelated flat fading Rayleigh channel.
Furthermore, the roll-off factor was set to 0.5. The delays
T,, are drawn from a uniform distribution between —c and
+0.

Fig. 4 shows three different conditions: The first con-
dition assumes perfect synchronization. The second and
the third condition assume imperfectly synchronized systems
with 0 = 0.0175 and o = 0.175 respectively.

Perfect synchronization results in a straight line since
(13) reduces to the simple SNR term. A synchronization er-
ror not larger than one percent of a symbol interval does not
effect the system much. However, random delays that may
be ten times larger than that show a clear effect in the high
SNR regime. The saturation for high SNR values will limit
the achievable throughput as shown in fig. 5.

Fig. 6 shows a BER simulation using the same scenario
as above. The BER, in contrast to the mutual information,
is nearly unaffected in the presence of small synchronization
erTors.

5. CONCLUSIONS

Synchronization in a distributed MIMO transmission with
eigenmode beamforming is a crucial issue. However, im-
perfections in synchronization are acceptable to a certain ex-
tent. We have shown how to compute an upper bound for the
achievable mutual information in the unsynchronized case.
It turns out that there is an upper limit. Hence increasing the
signal power and thus increasing the transmit SNR is not al-
ways reasonable depending on the synchronization accuracy.

Further studies are needed to investigate the case of
power loading, i.e., waterfilling. The question is whether the
conventional power loading is still the optimal one in an un-
synchronized case.
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Figure 3: Possible timing errors versus the raised cosine roll-
off factor so that the left hand side of (3) is less than 0.1, i.e.,
temporal inter-symbol interference can be neglected.
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Figure 4: SINR of each i-th substream in a system with Mt =
3 and MR = 4 under different synchronization conditions.

The channel properties are reflected via the two second
moment matrices. More research on their exact properties is
needed.

In distributed communications we do not just encounter
synchronization problems. Unknown carrier frequency off-
sets degrade the system performance as well. This problem
should be taken into account in order to obtain a comprehen-
sive model of a distributed communication system.
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