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ABSTRACT
Beamforming techniques are applied to microphone arrays
with the aim of separating sources and improving intelligibil-
ity, by means of spatial filtering. The non-stationary nature
of speech implies the use of adaptive beamformers and sev-
eral solutions have been implemented. Furthermore, inter-
fering signals coming from the same direction as the target
signal, cannot be filtered by the beamformer. The method
presented in this paper is an alternative to adaptive beam-
forming, combining a simple delay-and-sum beamformer
with a time-frequency masking method based on phase in-
formation. The beamformer is steered to the desired source
and a function related to the phase differences between the
steered signals at the microphones is evaluated to reject any
interference that passed through the beamformer. Thus, the
algorithm does not need to constantly adapt the filter coeffi-
cients and takes advantage of both beamforming properties
and time-frequency separation techniques. The separation
performance of the method has been evaluated in a noisy and
reverberant environment using different arrays, talkers and
scenarios. Real data are used to show the performance of the
real-time algorithm when isolating one of the sources in the
mixture.

1. INTRODUCTION

Isolating a speech source in a multi-talker environment has
been a commonly-addressed problem for many years and it
remains largely open and unsolved. Moreover, if the speech
sources are in a real, closed space, such as a common room or
office, their mixture is also contaminated by different types
of background noise and echoes due to reflections, making
the problem of separation more difficult. Finally, if the sepa-
ration system is working in real-time, the algorithms applied
for separation must be computable with minimal latency and
thus be relatively simple.

Beamforming techniques and Blind Source Separation
(BSS) methods are two different approaches for the speech
separation problem. The former approach takes advantage of
the spatial resolution given by a microphone array when sam-
pling a mixture of sources, while the latter uses the knowl-
edge of speech signal properties for separation, sometimes
also with the aid of the spatial resolution of a microphone
array.

Beamforming performs spatial filtering with the signals
gathered by a microphone array using them to modify its
beam pattern, enhancing the signal coming from the desired
Direction Of Arrival (DOA), attenuating the others. This
is very useful for speech separation when the beamformer
is steered to the target source, attenuating the interfering

sources coming from other directions such as reverberations
or background noise. The spatial filter is achieved by intro-
ducing different attenuation and delay values in each of the M
channels of the array and combining all of them. The beam-
former design consists of calculating the best parameters for
the M microphone channels. Beamforming was originally
applied to narrowband signals and later adapted to wide-
band signals, for instance splitting the frequency spectrum
into frequency bands and applying a different beamformer to
each band, thus implying an FIR filter for each channel. In
the case of non-stationary wideband signals, such as speech,
the coefficients of these filters must be adapted constantly
to track the changes of the signal (Adaptive Beamforming),
increasing notably the computational cost. The Generalised
Sidelobe Canceler (GSC) [1] is a typical linear structure for
Adaptive Beamforming.

Different types of BSS methods exist: statistical-based
algorithms, such as the one called ‘Independent Component
Analysis’ (ICA) [2]; methods that relay on Computational
Auditory Scene Analysis (CASA) [3]; or Time-Frequency
masking methods [4], often referred to as the Degenerate Un-
mixing Estimation Technique (DUET) [5]. Time-Frequency
masking methods compute a binary mask for the separation
of one source. The mask is applied to the mixture signal and
usually attempts to spectrally subtract all the time-frequency
points belonging to interfering sources.

Beamforming techniques usually demand lower compu-
tational cost than BSS algorithms, and thus may be more
suitable for real-time implementations. However even when
beamforming is able to noticeably reduce the background
noise and correlated interferences from different DOA’s, its
ability to reduce cross-talk interference is poor. The method
described in this paper combines a simple beamforming tech-
nique with time-frequency masking in order to reject all
types of interference present in a noisy, real-time environ-
ment. First, a simple delay-and-sum beamformer is steered
to the target source, enhancing the signal coming from that
direction. After that, the remaining interfering signal is re-
moved by a binary mask that is computed for each time-
frequency point according to a discriminant function that de-
cides whether the point contains a high level of interference
or not. The discriminant function is based on only the phase
information of the M aligned channels of the beamformer,
resulting in a algorithm that is computable in teal time.

In the next section we will describe the Phase-Isolation
algorithm [7] and the parameters used to evaluate its perfor-
mance. Section three shows the results of the real-time im-
plementation of the algorithm, in different scenarios. Finally,
section four gives some conclusions obtained from this work.
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2. METHODS

2.1 The Phase-Isolation Algorithm
Consider an array λ of M microphones in a multi-talker,
noisy and reverberant environment where we desire to iso-
late the speech source s(t). We can model the signal at mi-
crophone j as:

m j(t) = a(t− τ js)+ i j(t) (1)

where a(t) is an attenuated version of the direct-path tar-
get source s(t), τ js is the delay of s(t) at microphone j, and
i j(t) is the sum of all interfering signals at microphone j.
These interfering signals can be either correlated or uncor-
related, depending on their origin. We can consider three
different sources of interference: echoes of the target source
due to the reverberation of the room, that are attenuated and
delayed copies of s(t), so they are correlated interferences;
the speech signals, both direct-path and echoes, coming from
the remaining talkers, that are uncorrelated sources of inter-
ference; and background noise, also uncorrelated with our
target signal.

Let us assume that we know the position of the desired
source and those of the microphones in the array, so we can
calculate the time delays τ js for each channel and steer the M
microphones to the target source:

ms
j(t) = m j(t + τ js) = a(t)+ i j(t + τ js) (2)

The previous expression can be rewritten in the time-
frequency domain, for the lth frequency and mth frame, as
follows:

Ms
j(l,m) = A(l,m)+ I j(l,m)eiΩτ js (3)

where Ω is the discrete angular frequency. Then, the
output of the uniformly-weighted and normalized delay-and-
sum beamformer is:

Ms
λ
(l,m) =

1
M

M

∑
j=1

Ms
j(l,m) = A(l,m)+ Is

λ
(l,m) (4)

where A(l,m) is the desired signal and Is
λ
(l,m) is the in-

terfering signal left at the output of the beamformer. Com-
bining the M aligned signals results in a constructive addi-
tion of the target source and a destructive addition of the
interferences as the interfering signal at each microphone
is different. The beamformer has reduced some interfering
signal that comes from other directions, but there remains a
high level of cross-talk as well as noise and echoes coming
from the steered direction. Thus, we can define the Signal-
to-Interference Ratio (SIR) for the lth frequency in the mth
frame as:

SIR(l,m)≡ |A(l,m)|
|Is

λ
(l,m)| (5)

The problem to tackle now is to identify those l frequency
points in each frame m with low SIR and remove them from
the output. For this purpose, we are going to use the Gen-
eralized Cross-Correlation with Phase Transform weighting
function (GCC-PHAT) proposed in [6]. The GCC-PHAT

function between microphones j and k is computed as fol-
lows:

ψ
s
jk(l,m)=

Ms
j(l,m)Ms∗

k (l,m)
|Ms

j(l,m)||Ms
k(l,m)| ≡ ei(φ s

j (l,m)−φ s
k (l,m))≡ eiφ s

jk(l,m)

(6)
where φ s

j (l,m) and φ s
k (l,m) are the phases of the steered

signals at the microphone j and k respectively, and φ s
jk(l,m)

their difference. This phase difference is directly related to
the SIR function defined in (5): a phase difference of zero de-
grees implies SIR(l,m)→∞, and when this phase difference
increases, the SIR decreases. In the method proposed in [7],
the Steered Response Power (SRP-PHAT) of the beamformer
was calculated from the GCC-PHAT function and used as
discriminant function. In this work we took the real part of
the sum of the GCC-PHAT functions for only unique pairs
of microphones, instead of for all possible pairs, reducing
the number of operations. Then, the function to evaluate is:

γ
s
λ
(l,m) =

2
N(N−1)

Re{
N

∑
j=1

N

∑
k= j+1

ψ
s
jk(l,m)} (7)

and combining (6) with (7) we obtain:

γ
s
λ
(l,m) =

2
N(N−1)

Re{
N

∑
j=1

N

∑
k= j+1

eiφ s
jk(l,m)} (8)

The function γs
λ
(l,m) depends on ψs

jk(l,m), which in turn
depends on the SIR, so γs

λ
(l,m) is also related to the SIR.

If the values of the phase difference φ s
jk(l,m) are close to

zero (high SIR), then the function γs
λ
(l,m) tends to 1, when

φ s
jk(l,m) increases (low SIR), γs

λ
(l,m) tends to 0. Figure 1

shows this effect for a mixture of real data. In order to dis-
criminate points with low SIR, we set a threshold of SIR, that
corresponds with a determined value R of the function γs

λ
.

Then we can use the γs
λ

function as discriminator between
points with high SIR and points with low SIR.

5

While computing the phase-difference values is straightfor-
ward, obtaining a precise SIR(n, r) value in a real situation is
more difficult. 1 SIR(n, r) has been defined as the ratio of the
direct source-to-microphone signal amplitude to the amplitude
of the sum of all other signals that remain in the beamformer
(reverberation from the desired source, interfering source sig-
nals, their reverberation and background noise). Unfortunately
there is no perfect way to completely isolate the direct desired
source signal from all the interferers in a real environment.
Thus, it is impossible to get an exact value of the signal-to-
interference ratio at any time-frequency point and we shall
have to ”intelligently” approximate, taking advantage of the
fact that our sources are transducers that could synchronously
repeat digitally-recorded data so we could record additional
files with only subsets of the sources active. That is, for each
source, we recorded two additional files, one with that source
on alone, and the other with all three interfering sources active
only.

Using these additional files, we steered the signals for each
microphone to the desired source location, beamformed and
took the STFT. The first file (desired source only) gave us
an reasonable approximation of A(n, r) although it included
some reverberation noise from the desired source as well as
some noise from the background. The second file gave us
the denominator for the SIR ratio, excluding reverberation
from the desired signal. Their ratio, while not exactly what is
defined as SIR(n, r), yields a good approximation; the value
computed is the ratio of the amplitude of the signal in a time-
frequency point of the beamformer if only the desired talker
were active to the amplitude of the signal if all the sources,
excluding that desired, were active.

Now we can plot results based on real data to compare
against the ideal(simulated) plots shown in Figures 3 and 4.
These are given in Figures 6 and 7 respectively. There are some
important differences between the simulated results and the
results from real data, but the general pattern is the same; the
distribution of the phase difference values, φs

jk(n, r), becomes
more peaked as SIR(n, r) increases, resulting in higher values
for Υs

jk(n, r).
The major change from the simulated ideal to the real-data

case is that the distribution of φs
jk(n, r) is more widely spread

for high SIR(n, r) values. The explanation for this is twofold.
First, the SIR(n, r) computation from the real environment is
always higher than that of the definition due to reverberation
and background noise in the numerator. This is a significant
factor for both Figures 6 and 7. For the latter plot, this suggests
a shift – the value of which is indeterminate – to the left of
the abscissa.

Second, in a real environment, the source position is not
precisely known and the source is not a point source. This
causes errors in the time-delay estimations for the delay-
and-sum beamformer. Thus, the ideal assumption that all the
A(n, r) signals are precisely aligned is no longer perfect.
Ultimately phase-difference errors in φs

jk(n, r) are created –
causing a spread in the phase-difference distribution that is

1One should note that the actual SIR(n, r) value is only needed for
explanations here; it never needs to be computed when the phase isolation
algorithm is to be used to isolate sources.
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Fig. 6. The distribution for φs
jk(n, r) for a real, noisy and reverberant

environment with three additional talkers. Although the distributions are a lot
more spread for high SIR(n, r) the peaking at zero degrees is still visible.
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Fig. 7. Mean values for Υs
λ(n, r) for an experiment in a real, noisy

and reverberant environment. Although the gain for high SIR(n, r) time-
frequency points is significantly less than the ideal, simulated case, the
Υs

λ(n, r) value still contains information regarding SIR(n, r).

most problematic for high values of SIR(n, r). For time-
frequency points with low SIR(n, r), the distribution is
uniform already, so there is little impact. Ultimately, this
phenomenon implies that Υs

λ(n, r) will fall short of unity even
in very high SIR(n, r) conditions.

IV. THE PHASE-ISOLATION ALGORITHM

Based on the established relationship between Υs
λ(n, r) and

SIR(n, r), the proposed algorithm uses applies a threshold R
on Υs

λ(n, r) to identify those time-frequency points having
high SIR(n, r). The complete steps of the algorithm are as
follows:

• Steer each of the microphone signals to the desired talker
location obtaining ms

j(t).
• For each frame n

– Take the short-time Fourier transform of the steered
microphone signals ⇒Ms

j (n, r)
– Spectrally subtract the background noise
– Calculate Υs

λ(n, r)
– Beamform i.e., add up the processed spectra over all

microphones ⇒Ms
λ(n, r).

γ
s λ
(l

,
m

)

SIR(l,m)

R

Figure 1: Mean values of γs
λ
(l,m) with relation to the SIR for

real data. The value of R depends on the SIR threshold value
chosen.

If the previous discriminant function is combined with
noise spectral subtraction to remove the background noise,
we can obtain a good separation of the target speech source
from the rest of the talkers in an adverse environment.

The complete Phase-Isolation algorithm is summarized
in the next steps:
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1. Estimate the background noise spectrum, Mn
λ
(l,m), from

a period of silence in the real environment.
2. Compute the Short-Time Fourier-Transform for the cur-

rent frame.
3. Steer the microphones to the target direction and compute

the output of the delay-and-sum beamformer.
4. Calculate the discriminant function γs

λ
(l,m).

5. Attenuate time-frequency points with low SIR at the out-
put of the beamformer, evaluating the next two expres-
sions:

γ
s
λ
(l,m) > R (9)

|Ms
λ
(l,m)|2

|Mn
λ
(l,m)|2 > ρ (10)

If (9) and (10) are satisfied, the point has high SIR so
the output is taken from the beamformer, and Ŝ(l,m) =
Ms

λ
(l,m). Otherwise the point has low SIR and must be

attenuated to a small value µ , having Ŝ(l,m) = µ .
6. Reconstruct the signal in the time domain, ŝ(t).

2.2 Algorithm Implementation
The algorithm was implemented in real time in C++, running
on a PC Intel(R) Core (TM) i7 CPU 860 @ 2.80GHz with
3.49 GB of RAM operated with Microsoft Windows XP pro-
fessional. For real-time data acquisition, an M-Audio Fast
Track Ultra 8R sound card was used, allowing simultaneous
sampling of 8 input channels and having also 8 output chan-
nels. The sound card is connected via USB interface to the
PC. The sound driver user was ASIO for Windows.

The sample rate was 48 kHz and the frame length was
1024 samples. Thus, the speech was processed every 21.3
ms and played back to the output.

The interfering threshold R was set to 0.4 and the noise
threshold ρ to 10 dB. The value of µ was equal to 0.001 to
avoid musical noise. These parameters were set once for the
specific room and used for all the experiments. Tests were
carried out in a very noisy and reverberant room, with a T60
of around 350 ms. Our experimental system allowed the real-
time monitoring of its output through headphones attached to
the sound card.

2.3 Measurements
The method was tested with three different microphone ar-
rays of 8 elements each, combined with several different po-
sitions of two sources and a total of 14 different settings. For
each of these settings, 5 different measurements have been
performed using different speech sources, selected randomly
from the TIMIT database and mixing both male and female
voices.

The three different types of arrays are shown in Figure 2.
In ARRAY1, microphones are placed in a rectangular fash-
ion, while in ARRAY2 in a equidistant line. ARRAY3 is
similar to ARRAY1 but the distances between microphones
are halved.

Figure 3 shows two different scenarios for the position
of the sources and the array. Let us consider αT and αI be
the angles that the target and the interference source forms
with the center of the array. In the first scenario, the sources
are placed forming the same angle with respect to the center

d

dd

ARRAY2 d=2.5 inches

ARRAY1 d=5 inches
ARRAY3 d=2.5 inches

Figure 2: Microphone Arrays

of the array (αT = αI). In order to keep the reverberation
times about constant and create a few different settings, only
the distance d was varied and L kept constant. In the second
scenario, the target source was located just opposite the array,
having αT = 0 and αI was varied, again keeping the distance
L between sources and the array constant.

Table 1 summarizes the three different pairs of angle val-
ues that were tested for each scenario totaling 6 different con-
figurations. ARRAY1 and ARRAY2 were tested with the
6 configurations while ARRAY3 only with configurations 1
and 4 in order to compare with ARRAY1

2.4 Quality evaluation
The W-Disjoint Orthogonality (WDO) quality factor intro-
duced in [8] is a measure of the disjointness between the
speech sources contained in a mixture and can be also ap-
plied to evaluate the quality of the separation for time-
frequency methods. The WDO factor is computed from the
Preserved-Signal Ratio (PSR) and the Signal-to-Interference
Ratio (SIR). The PSR has the ideal value of 1 and represents
the ratio of the energy of the desired signal that has been pre-
served by the masking algorithm. PSR is calculated from the
expression:

PSRT = ∑
L
l=1 ∑

M
m=1 |MT (l,m)∗SS

T (l,m)|2
∑

L
q=1 ∑

M
r=1 |SS

T (q,r)|2 (11)

where MT (l,m) is the binary mask computed for the sep-
aration of the target source and SS

T (l,m) is the non-mixed
target speech source.

The SIR parameter measures the energy ratio of the target
signal to the interference speech signal after separation, so
the higher the value the better. In our case, we only have

Table 1: Different configurations of array-source positions
αT αI d

CONF1 30 30 100 cm
CONF2 45 45 140 cm
CONF3 60 60 172 cm
CONF4 0 30 50 cm
CONF5 0 45 71 cm
CONF6 0 60 87 cm
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d

L L
αT αI

(a) Scenario 1 (CONF1, CONF2, CONF3). Both speakers
form the same angle with the array.

d

L LαI

(b) Scenario 2 (CONF4, CONF5, CONF6). The target
speaker is set in front of the array.

Figure 3: Schema of the two different scenarios for measurements. The circles represent the speakers and the rectangle
represents the array. L is the distance from the speakers to the center of the array, and d is the distance between speakers.

one interference source, so the SIR is calculated from the
expression:

SIRT = ∑
L
l=1 ∑

M
m=1 |MT (l,m)∗SS

T (l,m)|2
∑

L
q=1 ∑

M
r=1 |MT (q,r)∗SS

I (q,r)|2 (12)

where SS
I (l,m) is the non-mixed interference speech

source.
The WDO factor is computed using the next equation

from the PSR and the SIR and has an ideal value of 1.

WDOT = PSRT −
PSRT

SIRT
(13)

To calculate the WDO factor, we need the non-mixed tar-
get source and the non-mixed interference source. These two
non-mixed signals must be contaminated by the same inter-
fering signals that the mixture. In order to have a good ap-
proximation of these two signals, we recorded the output of
the beamformer when only one source was played. Thus,
for the non-mixed target source, only the target signal is
played and recorded by the beamformer aimed to that direc-
tion. The same procedure was followed for the interference
signal, with the beamformer again steered to the target direc-
tion.

3. RESULTS

Table 2 shows the PSR, SIR and WDO parameters for the
different configurations and arrays used to evaluate the algo-
rithm. The three parameters were averaged, in every config-
uration, over 5 measurements with different speech sources.
For calibration, according to subjective listening tests carried
out in this work, a WDO value lower than 0.4 is noisy and
unintelligible, a value around 0.5 is somewhat intelligible but
still noisy, 0.6 usually means that the quality is quite accept-
able, and WDO values above 0.7 corresponds with clean and
intelligible speech. Generally high (> 0.7) WDO values are
obtained for all configurations and arrays. Comparing AR-
RAY1 with ARRAY2, we can see that ARRAY1 obtains bet-
ter results for the scenario 2, while ARRAY2 obtains better
separation for the scenario 1. ARRAY3 obtains worse WDO
values than ARRAY1 for the two configurations compared.

Table 2: Quality Results for Separation of the Real-Time
Phase-Isolation Algorithm in the different configurations for
3 different types of array

CONF PSR SIR WDO
ARRAY1 CONF1 0.795 28.523 0.774

CONF2 0.770 17.206 0.717
CONF3 0.728 17.664 0.682
CONF4 0.805 15.087 0.755
CONF5 0.787 20.867 0.750
CONF6 0.814 67.208 0.812

ARRAY2 CONF1 0.788 80.006 0.762
CONF2 0.776 99.167 0.764
CONF3 0.776 45.734 0.750
CONF4 0.759 28.208 0.712
CONF5 0.787 56.346 0.757
CONF6 0.758 44.499 0.731

ARRAY3 CONF1 0.787 16.447 0.712
CONF4 0.815 8.694 0.627

This is likely due to the fact that, given they have the same
arrangement, ARRAY1 has twice the aperture of ARRAY3.

Figure 4 shows the effect of varying the threshold R on
the PSR and SIR parameters. By increasing R, we can see
how we get a higher SIR, but also a smaller PSR, due to the
discriminant function rejecting more points of signal of any
type, resulting in an unintelligible output signal. It is clear
that we must select a value of R that is a suitable compro-
mise for a particular room and, perhaps, microphone/talker
arrangement.

4. CONCLUSIONS

In this paper we implemented a modified version of the al-
gorithm described in [7] in real time and tested the real-time
version using real data and many settings. Our tests used a
single interferer, but in a very noisy and reverberant room.
To establish validity, the algorithm was tested in different
scenarios, varying the positions of the sources, the array ge-
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(b) PSR vs R for ARRAY2
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(c) SIR vs R for ARRAY1
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(d) SIR vs R for ARRAY2

Figure 4: Effect of varying the threshold ’R’

ometries, and with different male and female speech sources.
While it is difficult to convey speech quality to a reader of a
paper, we assert the method significantly enhanced the isola-
tion of the desired talker consistently and without introducing
much distortion. The WDO numbers verify this assertion.
We expect that the phase-isolation algorithm will find some
important applications.
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