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ABSTRACT
The exact all-SNR Generalized Log-likelihood Ratio Test
(GLRT) of a Gaussian rank-one signal impinging on an 𝑀 -
antenna receiver in unknown spatially uncorrelated white
noise is derived and compared with some previous low-SNR
approximations to this problem. It is confirmed that the
coherence matrix used in the mentioned approximations is
a sufficient statistic for the GLRT over the complete SNR
range. In contrast, this exact, albeit more complex test, re-
quires the unconstrained optimization of a highly nonlinear
𝑀 -variate complex function which can be addressed using
classical optimization techniques. A maximum eigenvalue
problem combined with a univariate optimization problem
serves the purpose of initialization. Results validate the yet
unproven close to optimum performance of previous detec-
tors under the rank-one signal model for the tested SNR’s.

1. INTRODUCTION

Spectrum sensing constitutes an important tool in appli-
cations ranging from Cognitive Radio to radio-astronomy,
where statistical tests are required for assessing the presence
or absence of a signal in a given data record. The General-
ized Log-Likelihood Ratio Test (GLRT) has been successfully
applied to a wide range of scenarios: given a parametrized
data model, it evaluates the ratio of probability densities be-
tween the two hypotheses (presence vs. absence), each of
them maximized with respect to its corresponding parame-
ter set. Therefore, the resulting performance depends on the
closeness of the assumed model to the actual data genera-
tion process. Robustness to noise uncertainty is an impor-
tant feature required of this type of detectors, but, except
for the simplest cases, it usually leads to complex optimiza-
tion problems when formulated in terms of the GLRT. In
some cases, the operating conditions justify some assump-
tions: it is typical to consider the low-SNR regime, whereby
reasonable approximations improve mathematical tractabil-
ity at some unknown though reduced performance loss. This
paper addresses instead the exact solution of a multiantenna
detection problem valid for the all-SNR regime: we consider
the detection of a low-bandwidth signal by an uncalibrated
receiver modeled with an unknown diagonal noise spatial
correlation matrix Σ2. This signal model has been previ-
ously considered in [1] for spatial detection schemes and in
radio-astronomy contexts [2] for array calibration. The field
of Factor Analysis [3] has also addressed this type of prob-
lems, although the solution herein presented for the rank-one
(single factor) model is, to the author’s knowledge, hitherto
unknown. Although this is not an exhaustive list, previ-
ous work on array processing for spatially uncorrelated noise
may also be found in [5],[6],[7],[8],[9]. This paper considers
the detection of a low-bandwidth signal where a flat-fading
channel can be reasonably assumed. In the absence of in-
terference, the spatial correlation matrix is expressed as an
unknown diagonal (noise) with an unknown rank-one per-
turbation (signal): R = Σ2 + 𝜎2𝜶𝜶H.

2. SIGNAL MODEL

We consider a passband signal impinging on an 𝑀 -antenna
receiver, with 𝑦𝑖(𝑡) = 𝑠𝑖(𝑡) + 𝑤𝑖(𝑡) the passband signal at
carrier frequency 𝑓𝑐 picked up by the 𝑖-th antenna, and 𝑠𝑖(𝑡)
and 𝑤𝑖(𝑡) the signal of interest and Additive White Gaus-
sian Noise (AWGN), respectively. After down-conversion
and sampling at 𝑓𝑠 = 1/𝑇𝑠, the complex baseband signal
samples 𝑥𝑖(𝑛𝑇𝑠) at 𝑡𝑛 = 𝑛𝑇𝑠 are stored into vector x𝑛, of
components [x𝑛]𝑖 = 𝑥𝑖(𝑛𝑇𝑠). As in [1], both signal and
noise are considered spectrally white: the received signal
vector is expressed as x𝑛 = 𝑠𝑛 ⋅ 𝜶 + 𝜼𝑛, with 𝑠𝑛 a station-
ary Gaussian discrete white process, 𝜶 the signal steering
vector and 𝜼𝑛 a stationary discrete additive white Gaussian
noise (AWGN) vector process with diagonal spatial correla-
tion matrix Σ2 = 𝔼[𝜼𝑛𝜼

H
𝑛 ], with (⋅)H the conjugate trans-

pose operation. The following detection problem is stated,

ℋ0 : x𝑛
sp∼ 𝒩 (0,R0 = Σ2

0) (1)

ℋ1 : x𝑛
sp∼ 𝒩 (0,R1 = Σ2

1 + 𝜎2
𝑠 ⋅ 𝜶𝜶H) (2)

with
sp∼ denoting ’spatially distributed as’ , 𝒩 (⋅, ⋅) the nor-

mal distribution with specified mean and covariance matrix,
Σ2

0 and Σ2
1 the unknown noise correlation matrices under

hypotheses ℋ0,ℋ1, respectively, 𝜎
2
𝑠 ,𝜶 the unknown signal

power and steering (channel) vector under ℋ1, respectively.
Note that there exists an ambiguous (irrelevant) scale factor
in the product 𝜎2

𝑠 ⋅ 𝜶𝜶H = (𝜎2
𝑠/𝑎

2)(𝜶𝜶H ⋅ 𝑎2): in the fol-
lowing we set 𝜎2

𝑠 = 1. The data matrix X = [xH
1 ; ⋅ ⋅ ⋅ ;xH

𝑁 ],
with ; the vector stacking operation, incorporates the signal
x𝑖 received at the 𝑖-th antenna. Letting R𝑒 = 𝔼[x𝑛x

H
𝑛 ] de-

note the spatial correlation matrix, the probability density
function (p.d.f.) is expressed for either hypothesis as,

𝑝(X,R𝑒) =
1

(𝜋 detR𝑒)𝑁
exp

(
−𝑁tr[R−1

𝑒 R̂]
)

(3)

with tr[⋅] the matrix trace, 𝑁 the number of samples per

antenna and R̂ = XHX/𝑁 the sample correlation matrix.

3. DERIVATION OF TEST

The GLRT under the hypotheses ℋ1,ℋ0 is defined in terms
of the Maximum Likelihood (ML) estimates of the p.d.f. pa-
rameters of the respective hypothesis,

ΛGLRT = log
supΣ2

1,𝜶
𝑝(X∣Σ2

1,𝜶)

supΣ2
0
𝑝(X∣Σ2

0)
(4)

= Λℋ1

(
Σ̂

2

1, 𝜶̂
)
− Λℋ0

(
Σ̂

2

0

)
(5)

for Σ̂
2

1, 𝜶̂ and Σ̂
2

0 the corresponding ML estimates and
Λ = log[𝑝] the associated log-likelihood. The value of this
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and the other tests considered in this paper is compared with
a threshold 𝛾th to decide either hypothesis. The procedure
for solving the non-trivial optimization problem under ℋ1

in (5) is based on establishing a sequence of transformations
on the initial parameter space Θ1 = {Σ2

1,𝜶} so that par-
tial optimizations can be successively carried out on the new
parameters, as described in the two following subsections.

3.1 GLRT derivation: stage 1

The initial few lines of our derivation (this subsection) are
based on the initial conventions of the approximate low-SNR
algorithm developed in [1] and have been incorporated for
completeness of the exposition. The following subsection
(stage 2) contains the novel contribution of this paper. Un-
der ℋ0, the optimization of the loglikelihood Λℋ0 is not dif-
ficult and was shown to be [1],

Λℋ0

(
Σ̂

2

0

)
= log 𝑝(X∣Σ̂2

0 = D̂) (6)

= −𝑁(log 𝜋 +𝑀 + log det D̂) (7)

with D̂ = diag[R̂]. Under ℋ1 and using Sylvester’s deter-
minant property [1], we have for R1 in (2) that: detR1 =
(1 + 𝜶HΣ−2

1 𝜶) detΣ2
1. From now on, we set Σ2 = Σ2

1 and
𝜌 = 𝜶HΣ−2𝜶. Using the Matrix Inversion Lemma for R−1

1 ,
the log-likelihood becomes,

Λℋ1(Σ
2,𝜶) = log 𝑝(X∣Σ2,𝜶) = (8)

= − log 𝜋𝑁 −𝑁 log detΣ2 −𝑁 log(1 + 𝜌)−

− 𝑁tr

[(
Σ−2 − Σ−2𝜶𝜶HΣ−2

1 + 𝜌

)
R̂

]
From [1], g = Σ−2𝜶/

√
𝜌, constrained by construction to

gHΣ2g = 1. We define the cost function 𝐽1(Σ,g, 𝜌) =
−Λℋ1(Σ

2,𝜶)/𝑁− log 𝜋, which has to be minimized in terms
of the specified parameters,

𝐽1(Σ,g, 𝜌) = log detΣ2 + tr[Σ−2R̂] + log(1 + 𝜌)

− 𝜌

1 + 𝜌
gHR̂g (9)

s.t. gHΣ2g = 1 (10)

Henceforth, the derivation differs from [1].

3.2 GLRT derivation: stage 2

We introduce the unitary vector e𝑔 = g/∣∣g∣∣2 and denote
𝛾 = ∣∣g∣∣22, with ∣∣ ⋅ ∣∣2 the Euclidean norm. Then, gHΣ2g =
𝛾 ⋅ eH𝑔 Σ2e𝑔 = 1, so that 𝛾 = (e

H
𝑔 Σ

2e𝑔)
−1. The cost function

is now expressed as 𝐽2(Σ, e𝑔, 𝜌) = 𝐽1(Σ,g, 𝜌), with the new
parameters in the transformed set Θ2 = {Σ, e𝑔, 𝜌} now mu-
tually independent (although constrained: Σ ≥ 0, ∣∣e𝑔∣∣2 =
1, 𝜌 ≥ 0). Minimizing 𝐽2(Σ, e𝑔, 𝜌) with respect to 𝜌, we set
∇𝜌=𝜌𝐽2(Σ, e𝑔, 𝜌) = 0 and,

1

1 + 𝜌
− gHR̂g

(1 + 𝜌)2
= 0 (11)

⇒ 1 + 𝜌 = 𝛾 ⋅ eH𝑔 R̂e𝑔 =
eH𝑔 R̂e𝑔

eH𝑔 Σ
2e𝑔

(12)

Hence,

𝐽2(Σ, e𝑔, 𝜌) = 1 + log detΣ2 + tr[Σ−2R̂] + (13)

+ log
eH𝑔 R̂e𝑔

eH𝑔 Σ
2e𝑔

− eH𝑔 R̂e𝑔

eH𝑔 Σ
2e𝑔

(14)

We define the new diagonal matrix Γ, with D̂ = Σ2 + Γ (it
will be shown later that Γ ≥ 0). Therefore,

eH𝑔 Σ
2e𝑔 = eH𝑔 D̂e𝑔 − eH𝑔 Γe𝑔 (15)

= eH𝑔 D̂e𝑔 ⋅
(
1− eH𝑔 Γe𝑔

eH𝑔 D̂e𝑔

)
(16)

We define the unitary vector e𝑑 = D̂1/2e𝑔/∣∣D̂1/2e𝑔∣∣2 and
the coherence matrix C = D̂−1/2R̂D̂−1/2. Hence, incor-
porating e𝑑 into (16) and combining it with the ratio of
quadratic forms in (14), yields,

eH𝑔 R̂e𝑔

eH𝑔 Σ
2e𝑔

=
eH𝑑 Ce𝑑
eH𝑑 e𝑑

⋅
(
1− eH𝑑 ΓD̂

−1e𝑑
eH𝑑 e𝑑

)−1

(17)

= eH𝑑 Ce𝑑 ⋅ (1− eH𝑑Qe𝑑)
−1 (18)

as eH𝑑 e𝑑 = 1 and where we have defined the new diagonal

matrix Q = ΓD̂−1 = I−Σ2D̂−1. Now, the full matrix C is
known but the diagonal matrix Q is unknown as it depends
on Σ2. Therefore, we can perform an additional parameter
transformation based on Θ3 = {Q, e𝑑, 𝜌} instead of on Θ2

and operate with the modified cost function 𝐽3(Q, e𝑑, 𝜌) =

𝐽2(Σ, e𝑔, 𝜌). As tr[Σ
−2R̂] = tr[Σ−2D̂], we may write,

𝐽3(Q, e𝑑, 𝜌) = 1 + log det D̂+ log det(I−Q) +

+ tr[(I−Q)−1] + (19)

+ log
eH𝑑Ce𝑑

1− eH𝑑 Qe𝑑
− eH𝑑Ce𝑑
1− eH𝑑Qe𝑑

We now minimize the cost function 𝐽3(Q, e𝑑, 𝜌) with respect
to Q: we compute the derivatives ∇𝑞𝑘=𝑞𝑘𝐽3(Q, e𝑑, 𝜌) = 0,

with Q̂ = diag[𝑞1, ⋅ ⋅ ⋅ , 𝑞𝑀 ],

∇𝑞𝑘=𝑞𝑘𝐽3(Q, e𝑑, 𝜌) (20)

= − 1

1− 𝑞𝑘
+

1

(1− 𝑞𝑘)2
+

+
∣𝑒𝑑,𝑘∣2

1− eH𝑑 Q̂e𝑑
− ∣𝑒𝑑,𝑘∣2 ⋅ eH𝑑Ce𝑑
(1− eH𝑑 Q̂e𝑑)2

= 0

with 𝑒𝑑,𝑘 the 𝑘-th component of e𝑑. Defining 𝑃𝑠 =

𝑃𝑠(Q̂, e𝑑) = eH𝑑Ce𝑑/(1− eH𝑑 Q̂e𝑑), we get,

1

(1− 𝑞𝑘)2
− 1

1− 𝑞𝑘
=

𝑞𝑘
(1− 𝑞𝑘)2

(21)

=
∣𝑒𝑑,𝑘∣2
eH𝑑Ce𝑑

(𝑃 2
𝑠 − 𝑃𝑠) (22)

From (22), either all 𝑞𝑘 are positive and 𝑃𝑠 ≥ 1 or all 𝑞𝑘 are
negative and 𝑃𝑠 ≤ 1. Note also that 𝑃𝑠 ≥ 0 by construction
as a quotient of positive quadratic forms: see (18), where

𝑃𝑠 = eH𝑔 R̂e𝑔/e
H
𝑔 Σ

2e𝑔. Hence, 1 ≥ eH𝑑 Q̂e𝑑, which requires

D̂ ≥ Γ, and necessarily 0 ≤ 𝑞𝑘 ≤ 1, 𝑃𝑠 ≥ 1. From (22),
adding over 𝑘 and using the unitary character of e𝑑, we can

define 𝜉 = 𝜉(Q̂) (a compression of Q̂) as,

𝜉 =
𝑀∑
𝑘=1

(
1

(1− 𝑞𝑘)2
− 1

1− 𝑞𝑘

)
(23)

=
𝑃 2
𝑠 − 𝑃𝑠

eH𝑑 Ce𝑑
≥ 0 (24)
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Additionally, multiplying (22) by 1− 𝑞𝑘 and adding over 𝑘,

𝑀∑
𝑘=1

(
1

1− 𝑞𝑘
− 1
)

(25)

=
𝑃 2
𝑠 − 𝑃𝑠

eH𝑑Ce𝑑
⋅

𝑀∑
𝑘=1

(1− 𝑞𝑘)∣𝑒𝑑,𝑘∣2 (26)

=
𝑃 2
𝑠 − 𝑃𝑠

eH𝑑Ce𝑑
⋅ (1− eH𝑑 Q̂e𝑑) =

𝑃 2
𝑠 − 𝑃𝑠

𝑃𝑠
= 𝑃𝑠 − 1

Combining (7) and (19) the normalized log-GLRT Λ1
GLRT

can be defined in terms of 𝐽3 as,

Λ1
GLRT =

Λℋ1 − Λℋ0

𝑁
(27)

= 𝑀 + log det D̂− 𝐽3(Q̂, e𝑑, 𝜌) (28)

which yields,

Λ1
GLRT = (𝑀 − 1) + log det[(I− Q̂)−1]− (29)

− tr[(I− Q̂)−1] + 𝑃𝑠 − log𝑃𝑠 (30)

We note that Q̂ depends on e𝑑: Q̂ = Q̂(e𝑑) in terms of the
system of nonlinear equations in (22). Additionally, we will
be able optimize with respect to the compressed parameter

𝜉 ≥ 0 in (24), so that the constraint 𝜉 = 𝜉(Q̂) in (24) is
enforced. From (22), we can solve for (1−𝑞𝑘)−1 and keep the
only valid solution to the second-degree equation consistent

with 0 ≤ 𝑞𝑘 ≤ 1 and 𝜉 ≥ 0. Using the expression for 𝜉 in
(24), we get,

1

1− 𝑞𝑘
=

1

2

(
1 +

√
1 + 4𝜉 ⋅ ∣𝑒𝑑,𝑘∣2

)
(31)

We can also solve for 𝑃𝑠 in the second-degree equation in
(24). The only solution that guarantees 𝑃𝑠 ≥ 1 is,

𝑃𝑠 =
1

2

(
1 +

√
1 + 4𝜉 ⋅ eH𝑑 Ce𝑑

)
(32)

where (1−𝑞𝑘)−1 in (31) and 𝑃𝑠 in (32) are expressed in terms
of the same function. These two expressions can be readily
substituted into Λ1

GLRT in (30) so that the compressed log-

GLRT is expressed in terms of parameters 𝜉 ≥ 0 and unitary
e𝑑. For simplification, we note that the following monotone
increasing non-convex function g(𝜏 ) can be defined,

g(𝜏 ) = − log 1 +
√
1 + 𝜏

2
+
1 +

√
1 + 𝜏

2
(33)

with g(𝜏 ) ≥ 1. Therefore,

Λ1
GLRT(𝜉, e𝑑) (34)

= (𝑀 − 1) + g(4𝜉 ⋅ eH𝑑Ce𝑑)−
𝑀∑
𝑘=1

g(4𝜉 ⋅ ∣𝑒𝑑,𝑘∣2)

If we define the unconstrained vector v𝑑 = (4𝜉)
1/2 ⋅ e𝑑, with

𝑣𝑑,𝑘 its 𝑘-th component, the log-GLRT can be expressed al-
ternatively as,

Λ1
GLRT(v𝑑) (35)

= (𝑀 − 1) + g(vH
𝑑 Cv𝑑)−

𝑀∑
𝑘=1

g(∣𝑣𝑑,𝑘∣2)

and the following test can be finally defined,

T1 = max
v𝑑∈ℂ𝑀

[
(𝑀 − 1) + g(vH

𝑑 Cv𝑑)−
𝑀∑
𝑘=1

g(∣𝑣𝑑,𝑘∣2)
]
(36)

Hence, classical unconstrained optimization methods can be
applied for obtaining the final value of the test. An initial
estimate must be provided for the first iteration. The opti-
mization algorithm is described in section 4. We note that

from (24) and (22), 𝜉 can be computed from v𝑑 as follows,

which is consistent with the definition of v𝑑: v𝑑 = (4𝜉)
1/2⋅e𝑑,

𝜉 =

𝑀∑
𝑘=1

𝑞𝑘
(1− 𝑞𝑘)2

=
1

4
vH
𝑑 v𝑑 (37)

3.3 Other detectors

This section briefly describes two detectors that will be used
for comnparison in the simulations section. We note that ref-
erence [1] considered the following constrained optimization
algorithm as a low-SNR approximation to the GLRT,

T2 = max
v′
𝑑
:∣∣v′

𝑑
∣∣2=1

[
v′H

𝑑 Cv
′
𝑑

]
(38)

= 𝜆max[C] (39)

with a stationary point solution determined by the typical
eigenvalue/eigenvector relationship,

Cv′
𝑑 = 𝜆v′

𝑑 , 𝜆 =
v′H

𝑑 Cv
′
𝑑

v′H
𝑑 v

′
𝑑

(40)

In comparing with (36), we observe the following facts,
1. equation (38) is constrained by ∣∣v′

𝑑∣∣2 = 1. Hence, it is
not sensitive to scale (Euclidean norm of v′

𝑑). On the
contrary, equation (36) is sensitive to scale. This is due
to the fact that (38) was derived under low-SNR assump-
tions while (36) remains valid over the whole SNR range.
This scale sensitiveness is thus directly related to SNR,
as shown in section (5).

2. as g(𝜏 ) is a monotone increasing function, equation (38)

maximizes in fact the term g(v′H
𝑑 Cv𝑑) on the constraint

∣∣v′
𝑑∣∣2 = 1. The final term

∑𝑀
𝑘=1 g(∣𝑣𝑑,𝑘∣2) has been thus

disregarded.
Yet another point of similarity will be established in section
7 in terms of the stationary point solutions of T1 and T2.

A second detector was analyzed in [4], which operates
on the Euclidean norm of the off-diagonal components of C.
As the diagonal components of C are unity, it can also be
expressed in terms of the Frobenius norm of C,

T3 = ∣∣C∣∣𝐹 (41)

Although this detector was derived for a more general signal
model, it has also been included in the comparative analysis.

4. OPTIMIZATION ALGORITHM

The detector T1 is, potentially, a multimodal function in

terms of parameters 𝜉, e𝑑 or of v𝑑. Therefore, global opti-
mization rests on the ability to provide an initial guess of
v𝑑 as close as possible to the global maximum. Following
[1], we choose the maximum eigenvector of C for the first
iteration. This is consistent with the presence of the first

term g(4𝜉 ⋅ eH𝑑Ce𝑑) in (34), as g(⋅) is monotone increasing.
Instead, the second term

∑𝑀
𝑘=1 g(4𝜉 ⋅ ∣𝑒𝑑,𝑘∣2) is sensitive to

the squared components ∣𝑒𝑑,𝑘∣2 being as uniform as possi-
ble as can be seen considering its minimization under the
constraint eH𝑑 e𝑑 = 1. The following algorithm is proposed,
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1. Compute e0𝑑 = emax[C], with e0,H𝑑 Ce0𝑑 = 𝜆max[C].

2. Solve the single-variate optimization problem: 𝜉0 =

argmax
ˆ𝜉≥0

[
Λ1

GLRT(𝜉, e
0
𝑑)
]
.

3. Set v0
𝑑 = (4𝜉

0)1/2 ⋅ e0𝑑.
4. Apply some iterative unconstrained optimization scheme
to Λ1

GLRT(v𝑑) in (35) using the initial guess v
0
𝑑.

5. SNR ESTIMATION

We establish the relationship between the GLRT and the
SNR estimates at each antenna, where the per-antenna SNR
is defined from the model of the signal and noise power as
snr𝑘 = [ΓΣ−2]𝑘,𝑘. From the previous definition of Q: Q =

ΓD̂−1 = Γ(Γ + Σ2)−1, we get ŝnr𝑘 = [Q̂(I − Q̂)−1]𝑘,𝑘 =
𝑞𝑘/(1− 𝑞𝑘). Now, from (25), we may establish for 𝑃𝑠 that,

𝑃𝑠 = 1 +

𝑀∑
𝑘=1

𝑞𝑘
1− 𝑞𝑘

= 1 +

𝑀∑
𝑘=1

ŝnr𝑘 (42)

Substituting the identity (42) into the log-GLRT expression
in (30) and expressing 𝑞𝑘 as 𝑞𝑘 = ŝnr𝑘/(1+ŝnr𝑘), it is not dif-
ficult to show that the log-GLRT can be expressed in terms
of the optimum per-antenna SNR estimates as,

Λ1
GLRT = (𝑀 − 1)−

𝑀∑
𝑘=1

log(1− 𝑞𝑘)−
𝑀∑
𝑘=1

1

1− 𝑞𝑘
+

+ 𝑃𝑠 − log𝑃𝑠 (43)

= log

∏𝑀
𝑘=1(1 + ŝnr𝑘)

1 +
∑𝑀

𝑘=1 ŝnr𝑘
≥ 0 (44)

It should be remarked that this expression does not consti-
tute an equivalent criterion, but is simply a relationship be-
tween the value of the log-GLRT resulting from the optimiza-
tion procedure and the corresponding SNR estimates at the

same maximizing values of the parameter set Θ = {𝜉, e𝑑}.
Finally, from (24), we may also express 𝜉 in terms of the
per-antenna SNR estimates as,

𝜉 =
𝑀∑
𝑘=1

ŝnr𝑘 ⋅ (1 + ŝnr𝑘) (45)

6. LOW-SNR ANALYSIS OF T1

From (45), we take 𝜉 → 0+, so that the low-SNR analysis
reduces to examining the first non-zero term of the Taylor

series of (36) about 𝜉 = 0, where v𝑑 = (4𝜉)
1/2e𝑑. The Taylor

series of g(𝜏 ) yields g(𝜏 ) = 1 + 𝜏 2/16 + 𝑜(𝜏 2) and, retaining
the second order term, the following detector results,

T4 = max
e𝑑:∣∣e𝑑∣∣2=1

[
(eH𝑑Ce𝑑)

2 −
𝑀∑
𝑘=1

∣𝑒𝑑,𝑘∣4
]

(46)

where the scale factor 4𝜉 becomes an irrelevant common fac-
tor and can be dispensed with for the optimization. We
note the difference with T2 in (38): the second term in T4

does not appear. This is due to the fact that, although T2

was derived considering an intuitive low-SNR approximation,
an explicit Taylor series expansion was not available at the
moment. Additionally, we note that this low-SNR detector
should also be implemented iteratively as an explicit expres-
sion cannot be derived for the optimization problem in (46).

7. STATIONARY POINT ANALYSIS

We examine the equations for the stationary point of detec-
tor T1 as opposed to detector T2. The following Lagrangian
is constructed, where, the comparison requires that the uni-
tary vector e𝑑 (included as a norm constraint to the La-
grangian) and the scale parameter 𝜉 be treated separately,

ℒ = −g(4𝜉eH𝑑 Ce𝑑) +
∑
𝑘

g(4𝜉∣𝑒𝑑,𝑘∣2)− 𝜇1(e
H
𝑑 e𝑑 − 1)(47)

The stationary points are obtained from ∇eH
𝑑
ℒ = 0,

0 = −g′(4𝜉eH𝑑Ce𝑑)4𝜉Ce𝑑 +G′4𝜉e𝑑 − 𝜇1e𝑑 (48)

with g′(𝜏 ) = (d/d𝜏 )g(𝜏 ) and G′ a diagonal matrix of com-
ponents [G′]𝑘,𝑘 = g′(4𝜉∣𝑒𝑑,𝑘∣2). Pre-multiplying by eH𝑑 ,

𝜇1 = 4𝜉(−g′(4𝜉eH𝑑 Ce𝑑)eH𝑑Ce𝑑 + eH𝑑 G
′e𝑑) (49)

Substituting 𝜇1 into (48),

Ce𝑑 = (eH𝑑Ce𝑑)e𝑑 +
1

g′𝜉
(I− e𝑑e

H
𝑑 )G

′e𝑑 (50)

where g′𝜉 = g
′(4𝜉eH𝑑Ce𝑑) has been defined. Comparing with

T2 (38), which fulfils the stationary point equation Ce𝑑 =
𝜆e𝑑 = (eH𝑑Ce𝑑)e𝑑, a second scale-dependent (𝜉) correction
term has appeared. Now, differentiating with respect to 𝜉,

−g′𝜉 ⋅ 4eH𝑑 Ce𝑑 +
∑
𝑘

g′(4𝜉∣𝑒𝑑,𝑘∣2)4∣𝑒𝑑,𝑘∣2 = 0 (51)

−g′𝜉 ⋅ 4eH𝑑 Ce𝑑 + eH𝑑 G
′e𝑑 = 0 (52)

which provides an additional relationship to the non-linear
system associated with the stationary point. Hence, we get
1/g′𝜉 = eH𝑑 Ce𝑑/e

H
𝑑 G

′e𝑑 and, substituting into (50), we get
the following expression in terms of generalized eigenvalues,

Ce𝑑 =
eH𝑑 Ce𝑑
eH𝑑 G

′e𝑑
⋅G′e𝑑 (53)

e𝑑 = e[C,G′] ,
eH𝑑Ce𝑑
eH𝑑G

′e𝑑
= 𝜆[C,G′] (54)

This is a nonlinearly modified eigenvector equation, as G′ =
G′(e𝑑). The stationary point is found instead by direct op-
timization of T1 in (36) via a gradient descent algorithm.

8. SIMULATIONS

Simulations have been carried out for the signal model in
(2). All figures display, in logarithmic axes, the probability
of missed detection (vertical axis) versus the probability of
false alarm (horizontal axis). The following four detectors
have been considered:

1. Detector T1 (this paper) in equation (36), exact all-SNR
algorithm for the rank-1 signal model.

2. Detector T2 in equation (38), approximate low-SNR al-
gorithm derived in [1] for the rank-1 signal model.

3. Detector T3 in equation (41), approximate low-SNR al-
gorithm derived in [4] for the rank-𝑟 signal model, with
𝑟 unknown.

4. Detector T4 in equation (46), asymptotic low-SNR algo-
rithm for the rank-1 signal model.

The convergence rate of the iterative detectors T1 and T4 de-
pends on the SNR. We have verified that, when optimization
is implemented with a gradient descent algorithm, slower
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Figure 1: ROC: 𝑀 = 4 ; 𝑁 = 60 samples/antenna. Per-
antenna SNR’s (dB): [−1;−3;−8;−9]. Relative per-antenna
noise power (dB): [−1.5;−2;−1; 0].

convergence occurs with increasingly higher SNR (the max-
imum number of iterations has been limited to 𝑁it = 80).
Different useful signal powers are considered for each antenna
as indicated in the corresponding figure caption in terms of
their per-antenna SNR. The noise power at each antenna
relative to that antenna with maximum noise power is also
indicated. Figure 1 illustrates for a 4-antenna scenario that
at low-SNR and when not many samples are available, the
performance of all four algorithms is practically the same:
detector T1 and its corresponding low-SNR approximation
(detector T4) show very similar performance, as well as de-
tectors T2 and T3. Figure 2 illustrates the same scenario un-
der a uniform 2 dB increment in the per-sensor SNR, where
a slight dominance of detector T1 over the other detectors is
observed. MonteCarlo runs of 1 ⋅105 (fig.1) and 3 ⋅105 (fig.2)
iterations have been performed, so that probabilities below
10−4 may be subject to some statistical noise.

9. CONCLUSIONS

We have transformed the GLR optimization problem for the
Gaussian rank-one signal model exposed in the introduc-
tion, which was initially expressed in terms of 𝑀 unknown
complex variables (steering vector) and 𝑀 unknown real
variables (per-antenna noise power profile), into a concen-
trated GLR problem. The new GLR problem (detector T1),
which, is exact over the complete range of SNR, constitutes
an unconstrained 𝑀 -variate nonlinear optimization problem
in complex variables, thus reducing the initial dimensional-
ity of the parameter space. The mathematical expression of
detector T1 has been compared with the closed-form (but
approximate) algorithm in [1] (detector T2). Experimental
performance evaluation has validated the close-to-optimum
performance of detectors T2 and T3 in [4] against the ex-
act detector T1 (and its low-SNR approximation T4) for the
tested SNR’s. As far as has been possible to measure due to
the low probabilities involved, small improvements in T1’s
performance over the other detectors have been observed
when the per-antenna SNR increases (although still below
the 0-dB reference). In terms of complexity, detector T1

does not need eigenvalue evaluation as detector T2 but it is
iterative and the number of iterations required to converge
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Figure 2: ROC: 𝑀 = 4 ; 𝑁 = 60 samples/antenna. Per-
antenna SNR’s (dB): [1;−1;−6;−7]. Relative per-antenna
noise power (dB): [−1.5;−2;−1; 0].

to a local maximum increases with SNR (a maximum of 80
iterations has been considered) and involves square-root and
logarithm computations. Thus is the most complex of all
four considered. In contrast, detector T3 is the simplest as
it only requires evaluation of a Frobenius norm. The theoret-
ical objective of the paper has been the comparison between
the variational expressions of T1 in (36) and T2 in (38).
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