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ABSTRACT

In this paper, the problem of blind subspace-based channel estima-

tion in multiple-input multiple-output (MIMO) systems under or-

thogonal space-time block coded (OSTBC) transmission is inves-

tigated. We introduce a virtual snapshot model in which the redun-

dancies in the OSTBC are exploited to augment the received data.

We show that the vector of true channel parameters is scaled version

of the normalized principal eigenvector of the associated augmented

data covariance matrix, which in the case of rotatable OSTBCs is

not unique. We propose a simple weighting of the different virtual

snapshots in the computation of a modified covariance matrix and

derive general conditions that guarantee uniqueness of the channel

estimates from the principal eigenvector of that matrix. Further, we

prove that the blind estimation schemes of [8] and [9] can be viewed

as a particular examples satisfying these uniqueness conditions. In

previous works, the uniqueness of these schemes has only been con-

cluded from simulation results but it has not been proven analytically

before.

Index Terms— blind MIMO channel estimation, OSTBC, co-

variance matching, uniqueness conditions, subspace model

1. INTRODUCTION

In MIMO wireless communication systems, space-time coding has

been used to exploit the spatial diversity for improving reliability and

transmission rate [1]. In particular, the popular class of orthogonal

space-time block codes (OSTBCs) are known not only to maximize

the diversity gain, but also to offer a simple decoding scheme pro-

vided that the channel state information (CSI) is perfectly known at

the receiver [2]. In practical systems, the CSI is commonly acquired

from known training symbols inserted in the transmission at the ex-

pense of a reduced bandwidth efficiency. If differential encoding

schemes are applied then costly training symbols can be omitted,

however, at the expense of a 3-dB performance penalty [3]. Sev-

eral blind decoding and channel estimation techniques have been re-

cently proposed in [4]-[9] that avoid the latter drawbacks.

Methods of [4]-[6] exhibit comparably high computational

complexity and rely on a specific choice of the symbol constella-

tion. Moreover, they need to be performed in a block-wise man-

ner and therefore can not benefit from averaging over successive

blocks of received data. The approximate maximum-likelihood

(ML) approach of [7] is based on the iterative optimization of the

ML function with respect to the unknown transmitted symbols and

the desired channel parameters. However, it does not provide a

closed-form solution for the channel estimate, it requires proper
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initialization, and its convergence can not be generally guaranteed.

The approach of [8] that is solely based on second-order statistics

of the received data offers low computational complexity and is

independent of the symbol constellation. Nevertheless, it does not

allow the unique estimation of the channel for the important class

of rotatable OSTBCs [10], which includes the popular Alamouti

code, without performing linear precoding. Although the proposed

schemes of [9] are able to resolve these ambiguities, the uniqueness

of the estimates has never been proven analytically.

Below, we generalize our recent work of [11] for the class of

rotatable OSTBCs. First, we derive an augmented snapshot model

based on the redundancies of the OSTBCs and show that the vector

of channel parameters can be estimated as a principal eigenvector

of the corresponding covariance matrix. Then, we exploit the spe-

cific properties of the rotatable OSTBCs to prove that the respec-

tive largest eigenvalue exhibits multiplicities, which generally lead

to ambiguities in the estimation of the channel vector. To resolve

such ambiguities, we propose a general weighing scheme of the aug-

mented snapshots in the computation of a modified covariance ma-

trix. In the case of rotatable OSTBCs, the latter matrix is proven

to exhibit a unique principal eigenvalue from which the true chan-

nel vector can be recovered provided that specific conditions on the

weighting coefficients are satisfied. Based on these results, we show

that the linear precoding method of [8] and the correlation matching

method of [9] can be viewed as special cases of the proposed method

associated with a weighting scheme that satisfies the uniqueness con-

ditions. The uniqueness of the latter methods has not been proven

analytically before. It is noteworthy to mention that the weighting

strategy proposed in this paper can be extended straightforwardly to

MIMO-OFDM systems based on the coherent subcarrier processing

approach of [11].

2. SIGNAL MODELS AND CODE PROPERTIES

The input-output relationship of a MIMO system with N transmit

and M receive antennas can be expressed as [8]

Y(p) = X(p) H + V(p) , (1)

where Y(p) ∈ C
T×M is the received data matrix at block index p,

X(p) ∈ C
T×N is the code matrix of the transmitted symbols with

the code length of T , H ∈ C
N×M is the MIMO flat fading chan-

nel matrix and V(p) ∈ C
T×M is the matrix of additive noise. The

noise is assumed to be spatially and temporally white complex Gaus-

sian with the variance σ2. We consider the block fading scenario in

which the coherence time of the channel is much larger than the code

block length T . Consider the K complex information symbols cor-

responding to the p-th block of data prior to encoding are given by

[8]

s(p) , [s1(p), s2(p), . . . , sK(p)]T ,
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where (·)T denotes the transpose. Also, consider that each code

matrix X(p) , X(s(p)) is an OSTBC-type matrix, hence, [2]

X
H(p)X(p) = ‖s(p)‖2

IN , (2)

X(p) =

K
X

k=1

(CkRe (sk(p))+ Ck+KIm (sk(p))) , (3)

where (·)H is the conjugate transpose, IL is the L × L identity ma-

trix, ‖ · ‖ is the Frobenius norm of a matrix or the Euclidean norm

of a vector, Re(·) and Im(·) represent the real and imaginary parts,

and {Ck}
2K
k=1 are the OSTBC basis matrices that are known at the

receiver. Further, an OSTBC X(p) is called rotatable if there exists

a code rotation matrix Q ∈ C
N×N such that for any s(p) ∈ C

K×1

[10]

X(s(p))Q = X(s̆(p)), (4)

for some s̆(p) ∈ C
K×1 with s̆(p) 6= ±s(p). Otherwise, the code

matrix X(p) is non-rotatable. Using (2) and (4), it can be readily

verified thatQHQ = QQH = IN . In order to convert the complex-

valued signal model into an equivalent real-valued one, let us define

the following operator for any complex-valued matrix B [8]

B ,
ˆ

vec{Re(B)}T , vec{Im(B)}T
˜T

, (5)

where vec{·} is the vectorization operator. Making use of (3) and

(5) we rewrite (1) as [8]

y(p) = A(h)s(p) + v(p) , (6)

where y(p) , Y(p) ∈ R
2MT×1, h , H ∈ R

2MN×1, v(p) ,

V(p) ∈ R
2MT×1 and [11]

A(h) , [a1(h), . . . , a2K(h)] = [C1H, . . . ,C2KH]. (7)

Using (2), it can be proved that for OSTBCs, regardless of the value

of the channel vector h, the following orthogonality property holds

[8]:

A
T (h)A(h) = ‖h‖2

I2K . (8)

As A(h) is linear in h, there exists a unique set of matrices

{Φk}
2K
k=1 ∈ R

2MT×2MN such that [11]

ak(h) = Φkh, k = 1, . . . , 2K, (9)

where [11]

Φk ,

»

Re(IM ⊗ Ck) −Im(IM ⊗ Ck)
Im(IM ⊗ Ck) Re(IM ⊗ Ck)

–

, (10)

with ⊗ denoting the Kronecker matrix product and [11]

Φ
T
k Φl ,

8

<

:

I2MN , if k = l

−ΦT
l Φk , if k 6= l

. (11)

Note that the matrices {Φk}
2K
k=1 are also OSTBC-specific and,

hence, known to the receiver. Using (7) and (9), we have [8]

vec{A(h)} = Φh, (12)

where the matrix Φ ∈ R
4MTK×2MN is defined as

Φ ,

h

Φ
T
1 , . . . ,ΦT

2K

iT

. (13)

3. BLIND CHANNEL ESTIMATION

The specific structure of the OSTBCs reflected in (7) and (9) can

be exploited to create a set of 2K virtual snapshots from which the

weighted covariance matrix can be formed. This is of particular im-

portance in fast fading channel scenarios in which the subspace es-

timates are known to severely degrade in performance. Using (11)

along with the relations in (6), (7) and (9), the 2K virtual snapshots

can be defined as [11]

ỹ(k, p) , Φ
T
k y(p)

= Ãk(h)s(p) + Φ
T
k v(p) , k = 1, . . . , 2K, (14)

where

Ã1(h), Φ
T
1 A(h) =

h

h,ΦT
1 Φ2h, · · · ,ΦT

1 Φ2Kh
i

Ã2(h), Φ
T
2 A(h) =

h

Φ
T
2 Φ1h,h, · · · ,ΦT

2 Φ2Kh
i

...
...

Ã2K(h), Φ
T
2KA(h) =

h

Φ
T
2KΦ1h,ΦT

2KΦ2h, · · · ,h
i

, (15)

define the virtual signal matrices corresponding to the respective

virtual snapshots. We note from (11) that for OSTBCs, the signal

component h in (15) is orthogonal to the remaining signal compo-

nents in the virtual signal matrices Ãk(h), for k = 1, . . . 2K, as

hT ΦT
k Φlh = −hT ΦT

k Φlh = 0 for any k 6= l. A necessary and

sufficient condition for OSTBC to be rotatable is that the code rota-

tion matrix Q in (4) satisfies [10]

CkQ = dkCnk
, k = 1, . . . , 2K, (16)

where dk ∈ {±1}, and nk ∈ {1, . . . , 2K} is an index with nk 6= k
and nk 6= nl for k 6= l. Hence,

nk = M(k), k = 1, . . . , 2K, (17)

where M represents the specific one-to-one mapping which cor-

responds to the specific Q in (16) such that the ordered index set

{n1, n2, . . . , n2K} describes the permutation corresponding to the

ordered index set {1, 2, . . . , 2K}. Let us define

Q̆ ,

»

Re(IM ⊗ Q) −Im(IM ⊗ Q)
Im(IM ⊗ Q) Re(IM ⊗ Q)

–

, (18)

such that

Q̆
T
Q̆ = Q̆Q̆

T = I2MN , (19)

follows from the unitary property of the code rotation matrix Q. Us-

ing (10) together with (16) and (18), we have

ΦkQ̆=

»

Re{(IM ⊗ CkQ)} −Im{(IM ⊗ CkQ)}
Im{(IM ⊗ CkQ)} Re{(IM ⊗ CkQ)}

–

=dkΦnk
,

(20)

where dk ∈ {±1}, and nk ∈ {1, . . . , 2K} is an index with nk 6= k
and nk 6= nl for k 6= l. The properties (11) and (20) imply that if

code rotation matrix Q exists, then

Q̆ = dkΦ
T
k Φnk

k = 1, . . . , 2K, nk 6= k, nk 6= nl for k 6= l.
(21)

Hence, we conclude that Q̆ belongs to each of the following sets,

i.e.,

Q̆ ∈ C1 , {±Φ
T
1 Φ2,±Φ

T
1 Φ3, . . . ,±Φ

T
1 Φ2K}

Q̆ ∈ C2 , {±Φ
T
2 Φ1,±Φ

T
2 Φ3, . . . ,±Φ

T
2 Φ2K}

...

Q̆ ∈ C2K , {±Φ
T
2KΦ1,±Φ

T
2KΦ2, . . . ,±Φ

T
2KΦ2K−1}. (22)
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From (15) and (22), we further conclude that the vector h̆ , Q̆T h

which is orthogonal to h, is a column of each Ãk(h) for k =
1, . . . , 2K. In particular, we have

Q̆ = ±Φ
T
1 Φn1

= ±Φ
T
2 Φn2

= . . . = ±Φ
T
2KΦn2K

, (23)

with n1 6= n2 6= . . . 6= n2K . In other words, in each of the virtual

signal matrices in (15) the vector h̆ appears at a different column

position. Further, using (11) and (21), we obtain that Q̆T = −Q̆

and, therefore, h̆T ΦT
k Φlh = hT Q̆ΦT

k Φlh = −hT ΦT
nk

Φlh =
0 for nk 6= l. Hence, we conclude that all remaining columns in

Ãk(h) are orthogonal to h̆. The following lemma summarizes the

properties above:

Lemma 1: For rotatable OSTBCs, the vector h̆ = Q̆T h is iden-

tical to the nk-th column (up to sign) of the k-th virtual signal matri-

ces Ãk(h), k = 1, . . . , 2K, in (15) for some nk 6= k with nk 6= nl

for k 6= l. Also, the remaining columns in Ãk(h) are orthogonal to
it.

Next, we propose to weight the different virtual snapshots in

(14) by different scalars γk in order to enhance the desired signal

component h in the virtual signal matrices of (15). Towards this

aim, we define the weighted covariance matrix obtained from the

2K virtual snapshots in (14) as [11]

X (γ), E {
2K
X

k=1

γk ỹ(k, p)ỹ(k, p)T }

=
2K
X

k=1

γk

“

Ãk(h)E{s s
T }Ãk(h)T

”

+
2K
X

k=1

γkσ2

2
I2MN , (24)

where E{·} stands for the statistical expectation and the positive real

weight coefficients are contained in the vector γ , [γ1, . . . , γ2K ]T .
Let us assume that the symbol streams are mutually independent and

independent of the sensor noise. Inserting (15) in (24), we have

X (γ) =
2K
X

k=1

γk E{|sk|
2}hh

T

| {z }

desired component

+
2K
X

k=1

γkσ2

2
I2MN

| {z }

noise contribution

+
2K
X

k=1

2K
X

l=1;l 6=k

γk E{|sl|
2}ΦT

k Φlhh
T
Φ

T
l Φk

| {z }

orthogonal to the desired component

. (25)

It can be readily verified from the skew-symmetry property in (11)

and the covariance model in (25) that h is the eigenvector of X (γ)
with the corresponding eigenvalue

λh ,

2K
X

k=1

γk E{|sk|
2}‖h‖2 +

2K
X

k=1

γk
σ2

2
. (26)

It has been proved in [11] that for uniform weighting in (25), i.e., for

γ = γu , γ [1, . . . , 1]T with arbitrary real γ > 0, the true channel
vector h is the principal eigenvector of X (γu) with the associated

eigenvalue given as

λh = γ ‖h‖2
2K
X

k=1

E{|sk|
2} + γ

2K
X

k=1

σ2

2
. (27)

If the principal eigenvalue is unique, then the channel vector can be

estimated up to some real scalar ambiguity. Otherwise, there exist a

set of linearly independent eigenvectors corresponding to the princi-

pal eigenvalue. This is, for example, the case in rotatable OSTBCs

as stated by the following lemma:

Lemma 2: For rotatable OSTBCs and uniform weighting in (25),

i.e. γ = γu, the principal eigenvalue of X (γ) is not unique.
Using (20), it can be readily verified that multiplying X (γu)

in (24) from the left and the right by Q̆T and Q̆, respectively, only

changes the sequence in which the summations are performed in (24)

but does not change the individual components or the result of the

summation. Hence, the following property holds

Q̆
TX (γu)Q̆ = X (γu). (28)

Using (28), we have

X (γu) h = λmax (X (γu))h

⇒X (γu)Q̆Q̆
T
h = λmax (X (γu))h

⇒ Q̆
TX (γu)Q̆Q̆

T
h = λmax (X (γu)) Q̆T

h

⇒ X (γu)h̆ = λmax (X (γu)) h̆. (29)

As a result, we obtain that for the uniform weighting γ = γu, the

true channel vector h and its transformed version h̆ are both princi-

pal eigenvectors of X (γ), even in the case when different informa-

tion symbols in s(p) exhibit different powers.
The main idea in this paper is to exploit aforementioned prop-

erties of the rotatable OSTBCs and the degrees of freedom provided

by the weighting coefficients, {γk}
2K
k=1 in (25) to resolve such a mul-

tiplicity shown in (29). The devised strategy is based on the assump-

tion that the transmitted symbols have nonuniform powers such that

E{|sk|
2} 6= E{|snk

|2}, at least for one k ∈ {1, . . . , 2K} in the

mapping (17). It is noteworthy to emphasize that the latter assump-

tion includes two important examples as its special case. First, when

all transmitted symbol powers are distinct and second, when there

exists one symbol with unique transmitted power. Without loss of

generality, we assume that the symbol powers are arranged in non-

increasing order, i.e.,

E{|s1|
2}≥E{|s2|

2}≥· · ·≥E{|s2K |2}; E{|sk|
2} 6=E{|snk

|2},
(30)

for some k ∈ {1, . . . , 2K}. Further, consider a nonuniform weight

vector γ = [γ1, . . . , γ2K ]T chosen in correspondence to the symbol

powers in (30), such that

γ1 ≥ γ2 ≥ · · · ≥ γ2K ; γk 6= γnk
, (31)

for the k ∈ {1, . . . , 2K} according to (30) such that E{|sk|
2} 6=

E{|snk
|2}. The following lemma summarizes the proposed weight-

ing strategy:

Lemma 3: If the signal powers {E{|sk|
2}}2K

k=1 and weighting

coefficients {γk}
2K
k=1 in (25) satisfy (30) and (31), respectively, then

the principal eigenvalue multiplicity of matrix X (γ) coming from

implementation of rotatable OSTBC as shown in (29), will be re-

solved.

The proof of Lemma 3 directly follows from Lemma 1 and the

particular relations between (30) and (31). Recall from Lemma 1,

that the true channel vector h and the transformed channel vec-

tor h̆ are orthogonal to each other and orthogonal to the remaining

columns in Ãk(h), for k = 1, . . . , 2K. Consequently, both h and

h̆ are eigenvectors of X (γ) in (25) even in the case of nonuniform

weighting and the corresponding eigenvalues are given by (26) and

λ
h̆

, ‖h̆‖2
2K
X

k=1

γk E{|snk
|2} +

2K
X

k=1

γk
σ2

2
, (32)

respectively. From (19), we have that ‖h̆‖ = ‖h‖. Therefore,

taking into account (26), the weighting coefficients correspond-

ing to the symbol powers in (31) and (32), we can show that
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P2K
k=1 γk E{|sk|

2} >
P2K

k=1 γk E{|snk
|2}. As a result, λh > λ

h̆

and we conclude that the principal eigenvalue multiplicity of X (γ)
presented in (29) has been resolved.

In the following, we show that the covariance matching ap-

proaches of [9] can be viewed as special cases of the weighted

covariance approach proposed in this paper for specific choices of

the weight coefficients that satisfy the conditions of (31).

3.1. Euclidean Covariance Matching Criterion

Taking into account that the symbol streams are mutually indepen-

dent and independent of the sensor noise along with (6), we obtain

the following covariance matrix [8]

R , E{yy
T } = A(h)ΛsA

T (h) +
σ2

2
I2MT , (33)

where Λs , E{s sT }. Multiplying (33) from the right by

A(h)/‖h‖ and using (8), we have [8]

R
A(h)

‖h‖
=

A(h)

‖h‖

„

Λs‖h‖
2 +

σ2

2
I2K

«

. (34)

Since A(h)/‖h‖ has orthonormal columns and Λs is diagonal in

the case of mutually uncorrelated transmitted symbols, (34) can be

viewed as the characteristic equation for R. Hence, the signal sub-

space eigenvalues of R depend only on the norm of the channel vec-

tor h and not on its direction. In practice, R can be estimated as

R̂ =
1

P

P
X

p=1

y(p)y(p)T , (35)

where P is the number of data blocks that are used to estimate R.

The key idea of the Euclidean covariance matching (ECM) ap-

proach is to estimate the channel vector h, by minimizing the norm

of difference between the true and sample covariance matrices as [9]

ĥECM = arg min
h̃

‖R̂ − R(h̃)‖2

= arg max
h̃

n

2 tr(R̂R(h̃)) − ‖R(h̃)‖2
o

, (36)

where tr(·) stands for the trace of matrix. Using the orthogonality

property (8) and equation (33), we can rewrite the both terms in the

right-hand side of (36) as

tr(R̂R(h̃)) = tr(AT (h̃)R̂A(h̃)Λs) +
σ2

2
tr(R̂)

‖R(h̃)‖2 = ‖h̃‖4‖Λs‖
2 + σ2‖h̃‖2tr(Λs) +

MTσ4

2
.

Using the latter two equations and dropping the terms which do not

depend on h̃, (36) can be expressed as

ĥECM = arg max
h̃

n

2 tr(AT (h̃)R̂A(h̃)Λs)

−‖h̃‖4‖Λs‖
2 − σ2‖h̃‖2tr(Λs)

o

. (37)

It is noteworthy to stress that the main issue in the blind channel

estimation algorithm is the estimation of the channel vector direc-

tion while estimation of the channel norm boils down to finding a

proper scaling factor and can be done, i.e., as in [8]. Hence, by as-

suming the norm constraint on the optimization variable in (37) as

‖h̃‖ = ‖h‖, the terms (‖h̃‖4‖Λs‖
2) and (σ2‖h̃‖2tr(Λs)) become

constants and, therefore, they can be dropped. It can be shown [8]

that using (12), we have that (37) is equivalent to

ĥECM = arg max
h̃

h̃
TX (γECM) h̃, (38)

where

X (γECM) , Φ
T (Λs ⊗ R̂)Φ

γECM , [E{|s1|
2}, E{|s2|

2}, . . . , E{|s2K |2}]T , (39)

together with ‖h̃‖ = ‖h‖. Obviously, comparing (39) and (31)

considering the condition in (30) reveals that the ECM approach is

the special case of the proposed weighting strategy.

3.2. Kullback Covariance Matching Criterion

The main idea of Kullback covariance matching (KCM) is to mini-

mize the divergence between the true and sample covariance matri-

ces of the received data based on Kullback-Leibler divergence. Us-

ing this measure in the case of Gaussian observations results in the

following optimization problem to estimate the channel vector as [9]

ĥKCM = arg min
h̃

n

tr
“

R
−1(h̃) R̂ − I2MT

”

−log det
“

R
−1(h̃) R̂

”o

= arg min
h̃

n

tr(R−1(h̃) R̂) + log det R(h̃)
o

, (40)

where log(·) and det(·) stand for the logarithm and the matrix deter-

minant, respectively. To simplify the first term in (40), let us apply

the Woodbury identity to the true covariance matrix in (33) to obtain

R
−1(h̃) =

1

σ2/2
I2MT −

1

(σ2/2)2
A(h̃)Λs

.

„

I2K +
‖h̃‖2

(σ2/2)
Λs

«−1

A
T (h̃). (41)

Using (41) and dropping the term which does not depend on h̃, we

obtain

ĥKCM =arg max
h̃

(

tr

 

A(h̃)Λs

„

I2K +
‖h̃‖2

(σ2/2)
Λs

«−1

. A
T (h̃)R̂

”

− log det (R(h̃))
o

. (42)

The log det (R(h̃)) term in (42) depends on the product of the

eigenvalues of the true covariance matrix which in turn depends on

the norm of the channel vector and not its direction. Hence, this

term become constant and can be dropped if we again consider the

norm constraint as in (38). Hence, using (12), we have that (42) is

equivalent to

ĥKCM = arg max
h̃

h̃
TX (γKCM) h̃, (43)

where

X (γKCM) , Φ
T

 

Λs

„

I2K +
‖h̃‖2

(σ2/2)
Λs

«−1

⊗ R̂

!

Φ

[γKCM]k ,
E{|sk|

2}

1 + E{|sk|2}
‖h̃‖2

(σ2/2)

, (44)

with ‖h̃‖ = ‖h‖. Again, comparison between (44) and (31) and tak-

ing into account (30) approves that the KCM approach is the special

case of our proposed weighting strategy.
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Fig. 1. Bias vs SNR, rotatable OSTBC.

4. SIMULATIONS

In the simulations, the entries ofGl are kept fixed in each run and are

independently drawn from a Gaussian distribution with zero mean

and variance σ2
g . The rotatable full rate Alamouti OSTBC [10] with

N = M = K = T = 2 and QPSK symbols are used for encod-

ing. Also, a frequency flat block fading channel is considered in the

simulation setup in which P = 100 data blocks have been used to

estimate covariance matrix according to (35) and the results are av-

eraged over 200 Monte Carlo realizations. The proposed estimator

is compared to the ECM and KCM methods of [9] and the relaxed

maximum likelihood (RML) technique of [8] with uniform weight-

ing. Fig. 1 displays the bias of the estimates, computed for a fixed

channel vector h as the norm of the averaged channel estimation

errors

Bias =

‚

‚

‚

‚

‚

1

Nruns

Nruns
X

m=1

ĥ(m)

‖ĥ(m)‖
−

h

‖h‖

‚

‚

‚

‚

‚

,

for the methods tested versus the signal-to-noise ratios (SNRs)

where Nruns is the number of Monte-Carlo runs, and ĥ(m) is the

estimate of the h in them-th run. Fig. 2 shows the symbol error rates

(SERs) versus the SNR for the methods tested combined with the

maximum likelihood (ML) decoder. Additionally, the results for the

informed ML decoder are shown in this figure. The latter decoder

is assumed to know the channel exactly. In the presented exam-

ple, we have assumed Λs = 2K
8

diag([5, 1, 1, 1]) which guarantees

tr(Λs) = 2K, i.e., the average transmit power per symbol is equal

to that with equipower source. The weight vector γ corresponding

to the proposed method is generated randomly and sorted according

to (30) and (31). Also, γECM and γKCM are selected based on (39)

and (44), respectively. Aforementioned choices of weight vectors

should be able to resolve the non-scalar ambiguities associated to

the use of Alamouti as all satisfy the uniqueness condition presented

in Lemma 3.

It can be observed from Fig. 1 that the RML approach of [8]

with uniform weighting strategy is effectively not able to resolve the

ambiguity corresponding to the use of rotatable OSTBC while the

other methods resolve the ambiguities. Also, all other methods have

quite the same performance. From Fig. 2, it follows that the same

relationship between the performances can be observed in terms of

SERs of the ML decoder. Also, it follows that the SER performance

of all methods that satisfy conditions in Lemma 3 combined with the
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Fig. 2. SER vs SNR, rotatable OSTBC.

ML decoder closely achieves that of the informed ML detector.
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