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ABSTRACT

Using contextual information of phones is an effective way
to improve the performance of phone classification tasks, but
requires the use of dimensionality reduction. One of the dis-
advantages of Linear Discriminant Analysis (LDA), a pop-
ular dimensionality reduction method is that it is not able
to account for local differences between the distributions of
classes in the feature space. Newer methods, such as the Lo-
cal Fisher Discriminant Analysis (LFDA), on the other hand,
may overestimate the contribution of local distributions. In
this paper, we propose to use a dimensionality reduction al-
gorithm with an affinity matrix that allows finding the opti-
mal trade-off between local and global information. Experi-
ments on TIMIT show that both local and global information
in the MFCC feature space are important for phone classi-
fication and that a substantial improvement can be achieved
over both LDA and LFDA.

1. INTRODUCTION

MFCCs and PLP coefficients are powerful means to repre-
sent important local characteristics of speech signals. How-
ever, these features poorly represent temporal dynamics. The
ballistic nature of the movements of the articulators implies
that there is a substantial amount of continuity in the speech
signal. The delta and delta-delta coefficients that are typi-
cally used, however, do not capture very well the properties
of the trajectories that correspond to (demi-)syllables. Moti-
vated by this insight, several attempts have been made to bet-
ter capture this continuity. At least three different approaches
have been proposed: (1) using features that combine time
windows of different length (e.g. the TRAP features pro-
posed in [1]), (2) modelling feature trajectories by polyno-
mial regression (e.g. [2] [3]) and (3) by using sequences of
feature vectors as units for subsequent modelling. In this pa-
per, we will investigate the use of sequences of MFCC vec-
tors for the classification of phone-like speech segments.

A sequence of feature vectors captures trajectories; thus,
if a sufficiently long sequence were centered in a phone, it
would contain all acoustic information that is available for
the classification of this phone. However, this approach faces
two obvious problems. First, capturing temporal dynam-
ics implies capturing the different feature trajectories that
characterise the transitions from and into the neighbouring
phones. For the phone classification task this means that
quite different trajectories must still be mapped onto a sin-
gle phone class (lest one can succeed in modelling context-
dependent phones). Second, stacking enough feature vectors,
each consisting of more than 10 coefficients, to capture the
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transitions into and out of long phones, results in a high di-
mensional feature space that is sparsely populated, making it
difficult to define effective distance measures.

In order to handle the so-called curse of dimensionality,
several methods have been proposed for mapping a high-
dimensional original feature space into a lower-dimensional
space. In this paper, we focus on methods based on Fisher’s
Linear Discriminant Analysis (FDA). FDA aims to maximize
the ratio of the between-class and within-class variance in
the (reduced) feature space. Conventional FDA is a global
dimensionality reduction method, because the distances be-
tween all pairs of observations are given equal weight. This
is made particularly clear in the reformulation of the math-
ematics that avoids the use of class means and the global
mean [4] [5] However, it is well known that some acous-
tic features are important for discriminating between some
(classes of) phones, while they may be redundant for other
(classes of) phones. Moreover, the relevance of a feature for
the classification of a phone may depend on the segmental
context of that phone. These considerations lead to the con-
clusion that we need to extend FDA in such a way that local
structure can be brought to bear, in addition to the global dis-
tribution of the observations.

For that purpose a so-called Affinity Matrix has been
introduced in the equations that define FDA (cf. Section
2). The graph-embedding dimensionality reduction frame-
work [4] is a generalization of several dimensionality reduc-
tions methods that use an affinity matrix for a specific pur-
pose. One of the first methods that used the affinity matrix to
capture local structure information was Locality Preserving
Projection (LPP) [6]. Local FDA (LFDA) extends conven-
tional FDA by using a local kernel [5].

In [7] LFDA was applied to a Japanese speech recogni-
tion task. It was shown that the introduction of local structure
improved the performance compared to the baseline FDA re-
sults. However, in general the relative importance of global
and local information for subsequent classification tasks is
not known in advance. In fact, in many practical problems lo-
cal and global structures co-exist in the feature space. There-
fore, one would want to have a dimensionality reduction al-
gorithm that allows finding the optimal trade-off between
global and local information. In this paper we present such a
method.

Our paper is organized as follows. In Section 2 of this pa-
per we briefly review the dimensionality reduction algorithm
and a special view of capturing the local or global informa-
tion. After addressing the importance of simultaneously ex-
ploring both local and global structures, we firstly introduce
the theory of LFDA and then propose our extensions of the
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affinity matrix in Section 3. In Section 5, experimental re-
sults are presented. Discussion and conclusion are presented
in Section 6.

2. GLOBAL AND LOCAL DIMENSIONALITY
REDUCTION

2.1 FDA: A Conventional Global Approach

In this paper, a speech segment in the form of a block of
contiguous MFCC feature vectors is represented as a single
high-dimensional vector x (by stacking consecutive frames).
Suppose the classification problem can be stated in terms of
J classes C;, with each class C; containing n; of such vec-
tors. The conventional Fisher Linear Discriminant Analy-
sis (FDA) is based on two matrices. For each class C;, the

(w)

within-class scatter matrix S j is defined as:

Sﬁ'w) =Y (xji — ) (xji — 1)) )

4

in which ; denotes the mean of all vectors xj;, 1 <i < n;
in the class Cj, 1 < j <J. The between-class scatter matrix

S®) is defined as:
SO =Y = (u;— ) (wj — )" 2)

in which u denotes the overall mean and » the total number
of tokens.

Maximizing the ratio of the within-class scatter S*) and
the between-class scatter S®) (the FDA criterion) requires
finding the matrix T according to

argmax[rr((TS™T) ' TS®)T)] 3)
T

Equations (1) and (2) which define the between-class and
within-class scatter matrices can be rewritten to avoid the use
of the means, and to emphasize the relation between pairs of
vectors, in the following way:

1
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ij
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where Cy, = ij means that the observations x; and x; are
members of the same class C. In the conventional definition
of FDA, A;; and Aﬁ’j are independent of the distance between
x; and x;. Therefore, FDA can be considered as a global
dimensionality reduction method.

2.2 LFDA: Incorporating Local Information into FDA

In order to take local density information into account, the
coefficients A;; can be made dependent on the distance be-
tween two observations x; and x;. In the Locality Preserving

Projection-approach proposed in [6] the affinity matrix A is
defined as:

A = exp(—||xi —x;[%) (6)

When applied to Egs. (4) and (5) the net effect of Eq. (6) is
that the distance between x; and X; is taken into account in
the contribution to the between-class and within-class scat-
ter matrix. We can go one step further. When using Eq.
(6) all pairwise distances ||x; —x;||* are weighted equally.
However, this might not be optimal. To allow for different
weights, a locality preserving scaling kernel can be adopted
in LDA, as was done in [8] to obtain Local Fisher Discrimi-
nant Analysis (LFDA) by defining the weights as:

J— )
Aij_exp(—|xl Xf|> (7)

0,0

in which o, (where n is i or j) is defined by

0; = ||xi — x| (®)

In this expression, x{“ denotes the /" ranked neighbour in the
list of L nearest neighbours in the same class as x;, ordered
according to their distance to x;. This means that o; estimates
the local density of the class around the observation x; (the
same holds for x;). This leads to the following definition of
LFDA:

1
st — EZA}/\;'(Xi_Xj)(Xi_Xj)t )
ij
AY = { Aijfne it G =Gy
J 0 if Gy, # Cx;
1
St = 5 LAY (i —x)) (xi = x;)f (10)
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Thus, the affinity matrix (7) in LFDA assigns a larger weight
to observation pairs that are relatively close. At the same
time, pairs of observations that are farther apart make smaller
contributions to two scatter matrices.

3. GENERALIZED AFFINITY MATRIX

LFDA has proven itself as an effective way to exploit local
and global structures simultaneously [5]. However, LFDA
assigns a fixed weight to local and global information. In
most practical situations the structure of the feature space is
not known in advance. As a consequence, it is not known
what the best trade-off is between local and global informa-
tion. Conventional FDA is obtained by setting A;; = 1 to
when x; and x; are from the same class and A;; = 0 when x;
and x; are from different classes.

Thus, we can obtain a gradual transition between LFDA
and FDA by introducing a parameter Y into the affinity ma-
trix, which we apply as an exponent to the product o;0;. By
doing so, we change Eq. (7) to:

—
A7) = exp <_|X><f||) (11

(6i0))"
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Eq. (11) can be regarded as a generalized affinity matrix in
which y determines the trade-off between local and global
structure. Larger values of y correspond to smaller weights
of the affinity matrix. This results in smaller differences be-
tween the weights assigned to close and more distant pairs of
observations, making global structure increasingly more im-
portant than local structure. More in particular it holds that
with

® ¥ — +oo, A;j(y) — 1, which is equivalent to the conven-

tional FDA.

e vy =1, the approach is equivalent to LFDA.

e v=0,A;;(y) is equivalent to that of LPP [6].
In the following experiments we will investigate the trade-off
between local and global structure as a function of y in more
detail.

4. EXPERIMENTAL SETUP
4.1 Feature extraction and classification task

In our phone classification experiments on TIMIT [9] we
used the standard NIST training set (462 speakers, 3696 ut-
terances, 139,852 phone tokens for training), development
set (50 speakers, 400 utterances, 15,038 phone tokens) in
line with the choice made by A. Halberstadt in [10], and
the standard core test set (24 speakers, 192 utterances, 7195
phone tokens) for testing purpose. During modelling, the 64
TIMIT phone labels were reduced into 48 classes in line with
[9]. Only when evaluating the models, we further mapped the
labels into the commonly used 39 classes [9] to calculate the
classification error rate. Glottal stops (q) are ignored both in
training and testing.

The feature extraction is performed as follows. A short-
time Fourier analysis is performed with a 25ms Hamming
window and a 10ms window shift. For each frame, we com-
pute 13 MFCC features: co — c12. For each phone, we extract
23 consecutive MFCC feature frames with the center frame
aligned with the center frame of the phone as indicated by
the manual labelling. This means that there is a context of 11
frames to the left and right of the center of the phone, which
may or may not extend into neighbouring phones depending
on the duration of the phone.

The MFCC features are reshaped to a single 13 x 23 =
299 dimensional feature vector. Motivated by the common
tandem [11] of dimensionality reduction for classification,
in our experiments, Principal Component Analysis (PCA) is
first applied to map the 299-dimensional features into 150-
dimensional feature vectors (these 150 explain 97% of the to-
tal variance). The resulting 150-dimensional feature vectors
form the input for all the different LDA-based dimensional-
ity reduction techniques that we compare in the remainder of
this paper.

4.2 Weighted k-Nearest Neighbour classification

As said, after the dimensionality reduction, a weighted k-
Nearest Neighbour classifier [12] is used to classify the fea-
ture vectors into one of the 48 phone classes. This is done
as follows. Let x1,%»,...,X; be the k nearest neighbours of
an observation x. The weights of these neighbours are com-
puted according to Eq. (12).

L 2
Wi = exp <—”XTX|> d=12,..k (12

In this equation, k is the number of nearest neighbors while 7
is a parameter that is able to control the contribution of each
neighbor to the classifier. To determine the most likely class,
the weights in each class are accumulated using Eq. (13) and
the class label € associated with the largest sum is selected.

C‘:argmgx Z w;i (13)

x;€Ce

5. EXPERIMENTAL RESULTS AND ANALYSES
5.1 Experimental Results

To evaluate the proposed cascade algorithm PCA-(L)FDA-
kNN, we use the development set and core test set described
in the previous section to generate various experimental re-
sults. This was done as follows. First, reasonable values
of the parameters 7y, k and T were sought by globally inves-
tigating their effect on both the development set and core
test set. In preliminary experiments, it appeared that inter-
esting effects took place within k € {15,16,...,60}, T €
{3.5,3.625,...,6.875,7}, and y € {0,0.01,0.02,...,1.5}.
Fig.1 shows an example of our results. The figure describes
the relationship between 7y and classification accuracy with
some specific setting of k and . The two curves represent
the performance on development set and core test test. Four
vertical lines indicate the values fof y obtained in four differ-
ent ways: according to the conventional LFDA (i.e. y= 1, the
magenta vertical line), the Y that is found by optimizing the
performance on the development set (black line), the value
of 7 (the green vertical line) optimized on the core test set,
and the specific setting y = 0 that uses the affinity matrix in
LPP (the cyan vertical line, we call it as "LPP” in the remain-
der for convenience). The third y represents the situation in
which tuning takes place on the evaluation test set (‘oracle’
performance).

The following three subsections will analyze the results
to show the effectiveness of proposed method in different
views. In all experiments, values of 7, k and 7 will be given
for the sake of comparison.

5.2 Analysis 1: Performance Evaluation in Development
Set and Core Test Set

In our first analysis, all parameters are jointly optimized on
the development set. The resulting optimized parameters
are used for evaluation of the proposed method on the core
test set. This optimization yields a performance of the
locality-weighting algorithm of 74.45% accuracy on the core
test set. For fair comparison, we compare this result with the
PCA-FDA-KNN and the PCA-LFDA-kNN methods after the
same type of optimization: parameter optimization on the
development test set and scoring on the evaluation core test
set. The PCA-FDA-kNN method yields 73.52% (column
FDA in table. 1), while the PCA-LFDA-KNN method yields
74.00% (column LFDA). This table shows that weighting of
global and local information by means of the y parameter is
useful for obtaining results beyond those of the LDA and the
LFDA-based results.

5.3 Analysis 2: Robustness of Proposed Method

The first analysis shows the performance of the proposed
locality-weighting algorithm compared to the LDA- and the
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Table 1: Performance comparison of FDA, LFDA, and the
proposed locality weighting method method on the core test
set after optimizing the parameters on the development set.

[ Method [| FDA | LPP [ LFDA [[ Proposed Method |
[Accuracy [[ 73.52]73.99 74.00 || 74.45 |

LFDA-based method after jointly optimizing the three param-
eters (k,T,¥) on the development set. In the second analysis,
we investigate whether this improvement is robust and holds
for each (k, 7)-combination. To that end, model results were
obtained for a range of different values of parameters k and
7. For each fixed combination of k and 7, Y has been opti-
mized on the development set and used for testing on the core
test set. This analysis is designed to show the performance
comparison between the best-tuned ¥ on the development set
and the original LFDA (y = 1). These results can explicitly
be explained in terms of Fig.1: for each “picture” (possible
combination of parameters (k,7)), we are interested in the
difference between classification accuracy related to point A
(for LFDA) / D (for LPP) and point B. It could be noted that
the previous analysis part is interested in the “best picture”
whose point F has the accuracy higher than that of any other
“picture”.

To show this, table 2 provides some basic statistical analy-
sis of the performance difference. This table shows that we
could achieve 0.4%, 0.88%, and 0.04% gain over LFDA in
average, the best case, and the worst case respectively. The
positive number in the worst case means that introducing y
into LFDA improves the classification performance for all
(k, T)-combinations. The mean gain (0.40) and its standard
deviation (0.14) also proves that the gain is always moder-

Performance on the Development Set and Core Test Set: An Example
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Figure 1: An example of performance evaluation on the de-
velopment and core test set. Points A, B, C, and D show the
classification accuracy of LFDA (y = 1), the y optimized on
the development set, the optimal y optimized on the core test
set, and LPP (Y = 0) on the core test set. Points E, F, and G
show the classification accuracy of LFDA (y = 1), the ¥ opti-
mized on the development set, and LPP (y = 0) on the devel-
opment set. These points are noted for easy understanding of
our experiments

ate. Compared with LPP, although proposed method seldom
performs worse, it gains a larger percentage than LFDA on
average (0.58) and in the best case (1.14). In sum, proposed
dimensionality reduction algorithm with y outperforms both
LFDA and LPP with kNN classifier.

Table 2: Statistical analysis on the performance gain on core
test set of the best y of development set(%). The method
column means the one compared with proposed method.

[ Method [[ Avg. Gain (std) [ Max. Gain | Min. Gain |

LFDA 0.40(0.15) 0.88 0.05
LPP 0.58(0.22) 1.14 -0.19

5.4 Analysis 3: Effect of ¥ — Exploring the Performance
Upperbound in an Oracle Test

In the previous analyses, the parameter performance was
based on optimization on a separate development set. Prac-
tically, in many pattern recognition problems, the develop-
ment set and (core) test set are artificially defined and hardly
match with each other. This also holds for the the sets at
hand in TIMIT. To that end, it is useful to explore how well
the algorithm performs in an ’oracle’ setting, after tuning on
the test set itself.

Here, the optimum 7 is obtained by optimization on the core
test set. Referring to Fig.1, the differences between the clas-
sification accuracy associated to Point A/D and C of all pos-
sible settings of (k,7) is presented in Table 3. This table
shows the ceiling of the performance improvement (in per-
centage) between the LFDA/LPP-based method and the best-
tuned proposed locality-weighting method.

Table 3: Statistical analysis on the performance gain when
Y(%) is optimized on the test set. The method column means
the one compared with proposed method.

[ Method [[ Avg. Gain (std) [ Max. Gain | Min. Gain |

LFDA 0.70(0.13) 1.11 0.19
LPP 0.87(0.19) 1.39 0.19

6. DISCUSSIONS AND CONCLUSIONS

The conventional Fisher Discriminant Analysis (LDA) op-
timizes the between-class scatter compared to the average
within-class scatter. This approach treats each pair of obser-
vations x; with the same weight, without using the fact that
many data sets have a different local structure.

In this paper we present our idea to explore the local
and global structural information of TIMIT. This is done by
first generalizing the conventional LDA by weighting all the
between-pair distances. The novel affinity matrix acts as a
generalized form of original LFDA [5]) algorithm in order to
optimally exploit the local manifold structure together with
the global information that we assume is present in the acous-
tic space in which we represented the TIMIT phonemes that
we want to classify. The eventual equations are presented in
eqs. and , in which the affinity matrices have been general-
ized.
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Our LDA baseline uses a feature representation that is
based on the use of a block of consecutive MFCC feature
vectors. In the experiments, we have used a block size of
23 frames, which are 10 ms spaced apart. This means that
phones are represented in a way that does not critically rely
on information about phone boundaries. It also implies that,
if the blocks are long enough, information from neighboring
phones leaks into the block representation. This informa-
tion may be of help in the classification of the phones but
also harmful due to the unpredictability of the neighboring
phones’ labels.

In the three LDA-, LPP- and LFDA-based methods, &, T
are relevant parameters, while the locality-weighting method
introduces a novel parameter, Y. We performed experiments
by tuning three parameters (y for the proposed weighting
method and k, T for the back-end kNN classifier), all on the
TIMIT development set and core test set. Table 1 shows the
cross-validation results of four methods (proposed method,
LFDA, LPP, and baseline LDA). From the classification ac-
curacy, one concludes that three methods with locality infor-
mation, namely the LFDA-based method, LPP-based method
and the proposed weighting method, outperform the conven-
tional FDA. This means that the local structure can indeed
be effectively exploited in the feature space. Meanwhile, the
proposed method outperforms the other two methods: mod-
erate gains (0.45% and 0.46%) could be obtained. In the sec-
ond analysis, the robustness of proposed method was proven
by investigating the performance gain by cross-validation of
the parameter Yy only, for fixed combinations of k and 7. Here,
multiple kNN classifiers were applied, showing that the per-
formance could be improved (nearly) for all combinations of
k and 7 over LFDA and LPP. This shows that weighting lo-
cal and global structures in the LDA/LFDA-front-end makes
sense, also in the case of a less optimal kNN back-end. The
third analysis showed the upper (ceiling) limit of the gain we
could achieve, by means of an oracle experiment in which
the test set itself was used for optimizing the model parame-
ters. The significant gain (1.11% and 1.39% in maximum for
LFDA and LPP) obtained in this case also proves the poten-
tial usefulness of the proposed weighting method.

In summary, we firstly substantiated the co-existence of
local and global structure in the feature space of TIMIT. Fur-
thermore, a generalized affinity matrix with the parameter y
provided us a better way to explore these structures in terms
of dimensionality reduction algorithms. The effectiveness of
our approach was proven by TIMIT phone classification by
outperforming original LFDA and LPP.

It is interesting to note that our optimal setting of
LDA+KNN outperformed the kNN classifier used in [13]
when it was combined with MFCC features (74.45% versus
73.96%). However, their kNN classifier outperformed our
system when it was used with Boosted Maximum Mutual
Information features (78.38%). Although their usage of the
phonetic boundary information in TIMIT might account for
our degradation to their performance to some extent, we still
plan to investigate whether it is possible to integrate prior in-
formation about the most likely phone class in our extended
version of FLDA.
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