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ABSTRACT

The goal of this work is to improve automatic speech recog-
nition (ASR) performance in very noisy and reverberant en-
vironments. The solution is based on extracting sub-band
spectral variance normalization based features, which are ca-
pable of estimating the relative strengths of speech and noise
components both in presence and absence of speech. The ad-
vanced ETSI-2 frontend, RASTA-PLP, MFCC alone and in
combination with spectral subtraction are tested for compari-
son purposes. Speech recognition evaluations are performed
on the noisy standard AURORA-2 and meeting recorder digit
(MRD) subset of AURORA-5 databases, which represent ad-
ditive noise and reverberant acoustic conditions. The results
reveal that the proposed method is robust and reliable for
both low SNR and reverberant scenarios, and provide con-
siderable improvements with respect to the traditional feature
extraction techniques.

1. INTRODUCTION

In practical environments, a variety of signal variabilities de-
crease the speech intelligibility as well as the performance of
ASR systems. The important cause of signal variabilities is
due to the additive noise and reverberation. Additive noises
from interfering noise sources, and convolutive noise arising
from acoustic environment majorly contribute to a degrada-
tion of performance in speech recognition systems.

Noise reduction techniques are used to suppress the noise
and improve the perceptual quality and intelligibility of the
speech. To deal with additive noise, different techniques have
been proposed based on voice activity detection based noise
estimation, minimum statistics noise estimation, histogram
and quantile based methods, and estimation of the posteriori
and a priori signal-to-noise ratio [1, 2, 3, 4]. In [4], various
approaches to speech enhancement based on noise estimation
and spectral subtraction are discussed. Apart from stationary
background noise, another important source of degradation
is caused by reverberation produced in acoustic environment.
Traditional noise reduction methods, which are based on sta-
tistical modeling properties of noise and speech such as spec-
tral subtraction, Wiener filtering, and Bayesian estimation
fail to reduce reverberation effect as both clean speech and
reverberated speech posses similar statistical properties. The
speech signal acquired in a reverberant room can be modeled
as convolution of the speech signal with the room impulse
response, and several methods have been proposed to deal
with convolution distortion in [5, 6, 7, 8].

Additive noise reduction techniques usually have a trade-
off between the amount of noise removal and speech distor-
tions introduced due to processing of the speech signal. The
intensity of distortion induced is particularly high at very low
signal-to-noise ratios (SNR), degrading the performance of
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ASR system. In the context of convolutive noise, derever-
berated speech can be obtained by inverse filtering the im-
pulse response of the room. However, the impulse response
depends upon the distance between the speaker and the mi-
crophone, and room conditions. Thus extracting common set
of robust features which can perform well at low SNRs and
also handle various room impulse responses is a complex and
challenging task.

The traditional Mel-frequency cepstral coefficients
(MFCC) features are sensitive to noise as they capture the
absolute energy response of the spectrum. To overcome this
limitation, multi-resolution spectral entropy based features
were proposed in [9] to represent the peak energy in each
band as opposed to the mean values of the MFCC features.
These features in combination with perceptual linear predic-
tion features (PLP) improved the performance over the PLP
alone, specifically at low SNRs. Variance adapted acous-
tic models have been used for improving the robustness of
recognizers [10, 11]. In [11], variance adapted projection
measure improved the ASR performance significantly at low
SNRs of 10dB, 5dB and 0dB. Also, spectral subtraction has
been commonly used for noise suppression for enhancing
speech signals with static background noise [12, 13]. How-
ever, it has not been very successful in signal processing ap-
plications, because of the well-known musical noise effect.
Musical noise even at low levels significantly affect human
speech perception. Various methods have been proposed to
reduce musical noise, but improvement of performance at
low SNR values is not guaranteed [14]. The primary reason
is because musical noise is produced by physical inconsisten-
cies of subtracted amplitude spectra and unmodified phase.
To overcome this problem, a filtering process which can at-
tenuate or enhance spectra without separating the amplitude
and phase components is required.

In this work, an alternate approach for feature extrac-
tion based on normalized variances of the speech magnitude
spectrum in Mel sub-bands is used to overcome the limita-
tion of the spectral subtraction technique. The variance is
a statistical measure which represents dynamically chang-
ing spectral information, and is effective for distinguishing
the speech and noise frames, thereby improving the noise ro-
bustness. This is due to the fact that, the dynamic range of
the noise is smaller than the speech, because of the intrinsic
nature of the speech signal. The derived features are effi-
cient at very low SNRs and also in the context of mismatch
between training and testing reverberant environments. The
competency of proposed features is demonstrated with the
experiments performed on all test sets of 5dB and 0dB SNRs
of Aurora-2, which represent additive noise at low SNRs and
real-time reverberant speech acquired through four different
microphones of Aurora-5 database. The recognition results
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obtained using standard advanced ETSI front-end [16] and
RASTA-PLP, MFCC and combination of spectral subtraction
with MFCC features are tested for comparison purposes.

The paper is presented as follows: Section 2 describes the
feature extraction methodology. Section 3 presents database
description and experiments and section 4 discusses the re-
sults. Finally, Section 5 concludes the paper.

2. FEATURE EXTRACTION

The proposed approach is aimed to have consistent perfor-
mance in all practical environments i.e. considering both
additive and convolutive noises. Noise is due to peaks and
valleys which is caused by high variance in the spectrum of
noise, in which the values of each frequency vary in a random
way. After spectral subtraction the peaks of noise are shifted
down, while valleys between two peaks are minimized. So,
the peaks of noise still remain in the enhanced signal which
cause musical noise. For this reason, to reduce musical noise
it is necessary to reduce the peaks in the enhanced signal.
For the same, in the original noisy speech signal, the peaks
are suppressed based on the computation of frame variance,
and by filling-in the valleys between the two peaks. This al-
gorithm tries to process the noise using the information pro-
vided by the variance of noise frames and speech frames. In
this way, the goal is to suppress the peaks of noise to reduce
the musical noise and at the same time, to distinguish be-
tween clean and noisy frames of the signal. In this proposed
work, the idea is to retain high variance frames and minimize
low variance frames so as to emphasize the speech informa-
tion in the noisy signal. The result is a better segmentation
between noise frames and speech frames and a reduction of
noise in the entire spectrum due to the reduction of noise
peaks. The block diagram of the algorithm is shown in Fig.
1, and is as follows:

After applying spectral subtraction, as described in [15],
the power spectrum is mapped onto an auditory frequency
axis, by combining FFT bins into equally-spaced intervals
on the Mel axis defined by:

Mel(f) = 2595log;,(1 )

S
+ 700)
where f is the frequency in linear domain. The output is a
Mel-scaled vector consisting of ¥ (m), k=1,..,.K, m=0,1,..,00,
where k is the subband number, and m is the time index of
each subband signal. Then, the variance for each frame is
computed as
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where K is the number of bands, ¥ is the mean, and v; is ele-
ment number i. To suppress the peaks of noise, these values
are normalized with respect to the maximum value for com-
plete utterance as

v(m)
=— 3
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Later, these normalized values are used as weights which are
then multiplied with the filter bank energies as shown
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Figure 1: Processing stages of the subband variance spectral
feature.

The signal is then decorrelated by applying a discrete cosine
transform (DCT) for feature extraction.

For a given signal sampled at 8 kHz, short segments of
speech are extracted with a 25 ms rectangular window and
the window is shifted by 10 ms. Each speech frame is then
processed by a 32-channel Mel filterbank. Variance calcula-
tion across all the frames and normalization are performed to
derive the weights which are then multiplied with the original
noisy signal. The 32 Mel spectral values are transformed to
the cepstral domain by means of a DCT. Thirteen cepstral co-
efficients CO to C12 are derived. CO is replaced by logarithm
of the energy computed from the speech samples.

Fig. 2 (a, b, c) shows waveforms, spectrograms, variance
contour and sub-band spectral variance processed spectro-
grams of the clean speech and speech corrupted with 5dB and
0dB SNRs subway corrupted speech from Aurora2 database
for an utterance “three eight eight”. From second row, we
can clearly observe that the unprocessed spectrogram are af-
fected by the noise. The third row corresponds to the vari-
ance contours which is effective in providing segmentation
between noise frames and speech frames and also helpful in
reducing the noise in the entire spectrum due to the reduction
of noise peaks. The fourth row shows figures of the spec-
trograms of clean and sub-band spectral variance processed
speech. It can be observed that the proposed sub-band spec-
tral variance technique is effective in reducing the noise in
the spectrum and retain important information required for
speech recognition.
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Figure 2: Waveform, spectrogram, variance contour and sub-band spectral variance processed spectrogram of (a) clean
speech (b) 5dB subway noise corrupted speech and (c) 0 dB subway corrupted speech for an utterance “three eight eight*.

The normalized variance weighting method is a smooth-
ing technique which improves automatic speech recognition
in noisy conditions where speech frames are characterized by
high variance and noise frames by low variance values. The
spectral subtraction method is used to reduce the broadband
noise due to peaks, and the variance weighting technique is
effective in reducing the musical noise by reducing the dy-
namic range of its magnitude spectrum, which results in im-
proved speech recognition performance.

3. EXPERIMENTS AND RESULTS

Two sets of HMM-based ASR experiments are performed
with the proposed approach using a full HTK based recog-
nition system [17]. The first is a connected digit recognition
task using the Aurora 2 database [18]. The second is a meet-
ing recorder digits of Aurora-5 corpus [19].

3.1 Additive Noise

For the Aurora 2 experiments, training and testing follow the
specifications described in [18]. A word-based ASR system
for digit string recognition where each HMM word model
has 16 emitting states is adopted. A three-state silence model
and a one state short pause model are used. Testing data in-

clude eight types of realistic background noise subway, bab-
ble, car, exhibition hall, restaurant, street, airport and train
station noise at various SNRs (clean, 20, 15, 10, 5, 0, and 5
dB). There are three test sets. Set A contains 4004 utterances
in the first four types of noise, set B contains 4004 utterances
in the other four, and set C contains 2002 utterances where
only subway and street noise are present. The multicondi-
tion training, where 8440 utterances are split into 20 subset
with 422 utterances in each subset is considered. The 20 sub-
sets represent 4 different noise scenarios at 5 different SNRs
(from 20 dB to 0 dB). To study the efficiency of the proposed
features, the most challenging scenarios of low SNRs of 5dB
and OdB SNRs are tested.

Subway Babble Car Exhibition

0dB [ 5dB [ 0dB | 5dB | 0dB | 5dB | 0dB | 5dB

ETSI-2 33.1 [ 11.7|37.8 124|466 | 122|356 | 12.4
RASTA-PLP | 32.5]10.8 [ 43.2 | 14.7 | 48.1 | 11.6 | 34.9 | 12.4
MFCC 40.1| 195414165414 18.6 |41.2|17.6
SS+MFCC |49.4(23.4]434|17.7]50.020.6|53.7|26.0
SVF 275129373 |15.1|21.5| 104 | 27.8 | 14.6

Table 1: Testset A results for Aurora 2 database (word error
rate %)
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Restaurant Street Airport Train

0dB [ 5dB [ 0dB [ 5dB | 0dB [ 5dB | 0dB | 5dB
ETSI-2 40.7[16.5|38.6 143349 13.8|43.9|16.5
RASTA-PLP | 46.9 | 19.6 | 40.9 | 149 | 359 | 15.1 | 41.7 | 16.8
MFCC 433 |18.1383]|14.4]363|145(449|17.1
SS+MFCC [50.3(21.9(454]21.9]39.2]|16.6|454]19.5
SVF 37.5(16.3|29.2]14.0 | 29.1 | 13.3 | 26.7 | 12.0

Table 2: Testset B results for Aurora 2 database (word error
rate %)

Subway Street
0dB [ 5dB | 0dB | 5dB
ETSI-2 532 (176|456 | 174
RASTA-PLP | 54.4 | 17.8 | 46.7 | 18.6
MFCC 58.1{20.1|484(19.4
SS+MFCC |59.328.7]532(273
SVF 332|153 (34.2]|16.3

Table 3: Testset C results for Aurora 2 database (word error
rate %)

Tables 1,2,3 show the results in % word error rates for all
testsets of the database. ETSI-2, SS+MFCC, and SVF indi-
cate the standard ETSI advanced frontend, spectral subtrac-
tion preprocessing with MFCC, and the proposed spectral
variance features. All the features considered are of standard
39-dimensions along with their delta and acceleration deriva-
tives. The results indicated in bold represent the best perfor-
mance among all the features. From Tables 1,2,3, it is evi-
dent that the classical spectral subtraction commonly used to
counter additive noise has the worst performance compared
to all features, indicating inefficiency and effect of musical
noise at the low SNRs. It can also be seen that the tradi-
tional MFCC have better performance compared to spectral
subtraction preprocessing for all the cases. The RASTA-PLP
has better performance than the MFCC, indicating efficiency
of these features. The advanced ETSI-2 frontend, designed
specifically for Aurora-2 database has the best performance
compared to all features, except the SVF features. It can also
be observed from Table 1, that for majority of the cases SVF
has low error rates and from Tables 2 and 3 for all the cases
SVF has the low error rates. It can also be seen that for all
the OdB SNR cases, the SVF has low error rates. However,
when tested with high SNR scenarios the performance was
on par with MFCC without causing any degradation in the
performance.

3.2 Convolutive Noise

The experiments are conducted on a subset of the Aurora-5
corpus - meeting recorder digits [19]. The data comprise real
recordings in a meeting room, recorded in a hands-free mode
at the International Computer Science Institute in Berkeley.
The dataset consists of 2400 utterances from 24 speakers,
with 7800 digits in total. The speech was captured with four
different microphones, placed at the middle of the table in the
meeting room. The recordings contain only a small amount
of additive noise, providing the typical effect of hands-free
recording in the reverberant room. There are four different
versions of all utterances recorded with four different micro-
phones (labeled as 6, 7, E and F), as described in [19]. The
clean TI DIGITS without any additional filtering for training

is considered.

| | 6 [ 7 [ B[ F |

ETSI-2 36.1 | 53.1 | 424 | 37.7
RASTA-PLP | 25.1 | 343 | 32.3 | 26.3
MFCC 26.3 | 39.7 | 30.0 | 24.4
SS+MFCC 24.0 | 36.0 | 28.7 | 23.7
SVF 23.9 | 29.5 | 28.3 | 23.1

Table 4: Word error rates (%) for different feature extraction
techniques on four different microphones.

From Table 4, it is evident that the advanced ETSI front-
end has the highest error rates compared to all the features.
This demonstrates that for reverberant environments the ad-
vanced ETSI front-end is not effective as compared to its per-
formance in the presence of additive background noise. It can
be inferred that the techniques applicable for additive back-
ground noise removal are not suitable to handle reverberant
conditions which is consistent with the studies of [20]. The
combination of the spectral subtraction and MFCC has low
error rates compared to MFCC and RASTA-PLP has the best
performance among all the features, except the SVF features.
The SVF has low error rates for all the microphones, indi-
cating the efficiency of the proposed features in reverberant

environments.
MRD

Figure 3: Comparison of ETSI-2 and SVF features

4. DISCUSSION
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Fig. 3 shows comparison of the standard ETSI-2 ad-
vanced frontend and the proposed spectral variance features.
The comparison is performed by considering the averages
over 0dB and 5dB for all testsets of Aurora-2 database and
meeting recorder digit dataset of Aurora-5 database. We can
observe that the proposed spectral variance based features
perform consistently better than the ETSI-2 frontend for all
the testsets of Aurora-2 showing efficancy of these features
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for all types of noises which include subway, babble, car,
exhibition, restaurant, street, airport and train. Also, as ob-
served from Fig. 3 the spectral variance features perform
much better than the ETSI-2 advanced frontend for meet-
ing recorder digit task, indicating efficacy of these features
for reverberant scenarios. Also, this clearly demonstrates
that the techniques suitable for additive background noise
removal are not adequate to handle reverberant conditions.
Apart from consistency and robustness, the proposed simple
technique does not deteriorate the recognition performance
at high SNRs nor require complex additional processing in-
curring additional computational costs.

5. CONCLUSIONS

In this paper, a variance based approach is proposed to im-
prove the speech recognition performance in a noisy and
reverberant environments. The proposed features were de-
rived from subband variance normalization technique where
speech frames are characterized by high variance and noise
frames by low variance, which are suppressed to improve
ASR performance. The spectral subtraction method was used
to reduce the broadband noise due to peaks, and the vari-
ance weighing technique was effective in reducing the mu-
sical noise by reducing the dynamic range of its magnitude
spectrum, which resulted in the improved speech recogni-
tion performance. The features were evaluated on Aurora-2
and Aurora-5 meeting recorder digit task. Results were com-
pared with standard ETSI advanced front-end and conven-
tional features. The results show that the proposed features
perform consistently better both in terms of robustness and
reliability.

This study raised number of issues, including on-line im-
plementation with normalization techniques applied onto the
past frames of the speech signal, improvement of variance
based features to deal with both additive noise and reverber-
ation conditions simultaneously. For the future, we like to in-
vestigate these issues to efficiently deal with real world noisy
speech, and evaluate these features on large vocabulary tasks
such as Aurora-4.
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