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ABSTRACT

In this article, we present a source separation method for
linear-quadratic models. This class of mixing models is en-
countered in various real applications, such as hyperspec-
tral unmixing for urban environments. Linear-quadratic mix-
ing models are less studied in the literature than linear ones
but there exist some methods for handling them, essentially
Bayesian or based on Independent Component Analysis.

We propose a separation method based on Non-negative Ma-
trix Factorization (NMF). This class of methods is well-
suited for many applications where data is positive and sat-
isfies a linear model. The originality of our work is that
we here developed an extension of NMF suited to linear-
quadratic models. We also show how we can extend this
method to the more general case of polynomial models.

Our method for linear-quadratic models is tested with mix-
tures of artificial signals and yields attractive performance.
We also apply it to hyperspectral unmixing, by testing it with
artificial mixtures of reflectance spectra, which gives encour-
aging results.

1. INTRODUCTION

Our work focuses on source separation for instantaneous
linear-quadratic mixing models. This class of models has
been less studied in the literature than linear models. There
however exist some proposed methods, essentially based on
Independent Component Analysis (ICA)[2][4] or Bayesian
approaches [3].

The study of the linear-quadratic mixing model is inter-
esting because it concerns various real applications, such as
hyperspectral unmixing in remote sensing [6][7]. The most
used model in hyperspectral unmixing is the linear one, but
it is only valid when the surface is flat and homogeneous.
In urban environments for example, the 3D structure in-
duces multiple scattering of light between surfaces and this
yields a linear-quadratic model when only taking into ac-
count second-order interactions. In this article we are eventu-
ally interested in this application of linear-quadratic models.
In this case, we aim at unmixing the reflectance spectra as-
sociated with the different materials composing the pixels in
an image.

We first propose, as a source separation method, an ap-
proach based on Non-negative Matrix Factorization (NMF)
[1], that we develop specifically for the linear-quadratic
model. NMF methods are interesting when one works with
positive data. Besides, the use of these methods remains pos-
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sible when data do not satisfy the source independence con-
dition required in ICA methods. In the case of hyperspectral
unmixing, for example, the reflectance spectra are often cor-
related. We also show how our method for linear-quadratic
models can be extended to polynomial ones.

To assess the performance of our linear-quadratic method
we first present tests made with artificial signals. We then
provide an example in hyperspecral unmixing, by showing
results obtained with mixtures of reflectance spectra.

In Section 2 we first present our NMF algorithm for
linear-quadratic mixing models. Then we provide an exten-
sion to the case of polynomial models. In Section 3 we show
results obtained with artificial signals, then for hyperspectral
unmixing, in the case of linear-quadratic models.

2. THE METHOD
2.1 Adaptation of the Linear-Quadratic model to NMF

In this section we focus on linear-quadratic mixing models.
At this stage we only present mixtures of two sources s1 and
s3. For a given sample 7, the observation (mixture) x; reads

xi(n) = ay(i)s1(n) + az(i)s2(n) + a1 2(i)s1(n)s2(n). (1)
This yields in matrix form
X =4S ()

where :
e X =[x;---xp|", with P the number of observations (P >
2) and x; = [ xi(1) xi(K) ]T, K the number of
samples, indexed by »

]T

oS = [851 5 5108 }T, where s;p =
[ s;(1) 5;(K) ]T (® stands for element-wise
multiplication)
al(l) az(l) a172(1)
e A= : is the mixing matrix.
al(P) az(P) a172(P)

We assume that our data (sources and mixing coeffi-
cients) are positive. Considering that the third line in ma-
trix S corresponds to a pseudo-source equal to the product of
the two real sources, Equation (2) will permit us to develop
an NMF method, suited to linear-quadratic models. Here-
after, we will call this pseudo-source the third source”, but
we have to keep in mind that our observations are actually
mixtures of only two physical sources: s; and s;.
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2.2 Our method: LQ-NMF

We here present our method developed for linear-quadratic
mixtures, which is an extension of linear NMF methods.

Principle of NMF :  Given a non-negative matrix V,
Non-negative Matrix Factorization consists in finding
non-negative matrix factors W and H that verify V ~ WH.

The way we wrote our mixtures in Equation (2) allows us
to extend the principle of NMF methods, which is well-suited
to linear mixtures, to the linear-quadratic model.

Different NMF methods have been proposed in the liter-
ature for linear mixtures (see [1]), based on different criteria,
without or with constraints. They yield several updating rules
for the matrix factors (they are iterative algorithms). We here
chose the classical criterion of Frobenius norm (see Equation
3), with a simple gradient descent algorithm (see [1]). How-
ever, our mixing model implies new gradient calculations and
new updating rules for the estimation of our factors 4 and .

To make calculation easier we rewrite our matrices as fol-

lows
ai(1)  ax(1)
A=[ A, Ap |,whered,=
ai(P) ax(P)
aia(1)
and 4 = :
ap2(P)

e S— { g: },whereSHZ[ s 52 ] and S =[s; @s5]7

Our criterion reads
1 ) 1 2
=3 IX— A8} = JIX — AaSa— AsSilE )

Our mixing model does not induce any modifications in gra-
dient calculation with respect to the mixing matrix, since our
criterion has the same dependence with respect to the mixing
matrix 4 as in the linear case. Indeed, writing the criterion
as follows

%Tr((X—AS)(X—AS)T)

%Tr(XXT -

J

XSTAT — ASXT +ASS"AT)

permits us to easily derive the gradient expression (see [8])

g—j = %(—XST—XST+2ASST)
= (X—-48)8"

As stated above, we obtain the same result compared with
the linear case. This yields the following update rule for the
mixing matrix [1]

aJ

(m+1) e
4 oA

=A™ — o (4)

where « is a small positive learning rate.
However, the third source is the product of 7 and s, and
this changes gradient calculation with respect to the sources,

compared with the case of a linear model. We derive the gra-
dient using scalar calculation, we thus first write our criterion
as follows

J = 72X AaSa AbSb]m

in

= Sl (AaSa)in— (s’

in
= 3 k- Za]
in

We now calculate the gradient of J with respect to Sy, (with

Sjn=[Sjn)
oJ
5 = Tt S0,

X (—ai (i) — a1 2(i)S2)

2
= *zal (Xin — zaj ]n*a12( i)812S24) (5)

j=1
2
—San a1 2(i) (xin — z
i j=1

The gradient with respect to Sy, can be obtained easily
by permuting, for S}, and a;(i), indices 1 and 2 in (5).

Replacing scalar expressions by matrix products, we fi-
nally obtain

aJ

— a1 2(1)S1,S2,)

— a1 2(1)81,52n)

— a1 2(0)81,52n)

G5 = AGX—AS) — [Sala x [} (X~ 4S)],
aaTJ = —[Ag (X~ A8))2y — [Sal1n * [} (X — AS)],
2n

This yields the following updating rules for the (m + 1) it-
eration

(m+1) (m) aJ

S S —a 6
1n 1n aSln ( )
1) _ om0

S2n - SZn a aszn (7)

L @®)

As shown by (8), for the third line of the matrix S, we just
copy the element-wise product of the first two lines (our two
effective sources). We thus force the third source to be in
keeping with the reality in our mixtures.

Concerning updating rules in Equations (4), (6) and (7),
applying the gradient descent algorithm in this way is not
sufficient because it does not guarantee positivity. To solve
this problem we chose the solution proposed in the literature
(see [1]) which consists in comparing, at each iteration, the
calculated update with a very small positive value €. We keep
the maximum between them as follows

A(m-H) max{A(mH),e} (9)
STV = max(Sy"Y e} (10)

This must be understood as a comparison of each element of
the matrix with €, and we only replace the negative elements
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by €. This way, we eliminate all negative matrix entries and
guarantee the positivity needed in an NMF algorithm.

It is well-known that NMF methods do not lead to a

unique solution [5] and do not guarantee convergence to a
global minimum [1]. Besides performance can depend on
matrix initialisation. To tackle this problem, additional con-
straints can be added to the initial criteria to be minimised,
such as sparsity or smoothness constraints. These constraints
depend on the data properties in the considered application
and can improve the algorithm performance.
We here decided to stay in a general framework, i.e. without
constraints, which can then be easily adapted to particular ap-
plications and whose results can thus be improved by adding
some constraints.

2.3 Extension to polynomial models

The above method can be extended to a much more general
model which is the polynomial one. We here show how this
may be achieved, thanks to the following simple case of mix-
tures

ay(i)s1(n) + az(i)s2(n) + a3 (i)s3(n)
+ai2(i)s1(n)s2(n) +ay 3(i)si1(n)s3(n)  (11)
+az 3(i)s2(n)s3(n) +ai 2,3(i)s1(n)s2(n)s3(n)

xi(n) =

As in Section 2.1, we can write this model in matrix form to
adapt it to NMF methods. We thus obtain the same matrix
form as in Equation (2) but with the following new defini-
tions for matrices 4 and S:

Sa
e S= [ Sp ] where

Se
Sa=[s1 s2 s3]
Sp=[ 51082 51083 $08 |
S.=[s1080s3 |
e A=[ A, Ap A, |, where

M al(l) az(l) a3(1)
Aa= : :

L a1(P) a(P) a3(P)

[ aia(1)  ais(l) ax3(1)
A= :

L a12(P) a13(P) ax3(P)

[ ai23(1)
Ac.= :

L a123(P)

With this notation, the criterion in this case reads

1 1
J = 3|1 X — AS|[F = S 11X — AaSa — ApSy — AcSe[[F (12)

T2

Due to space limitation we here do not present gradient cal-
culations for this criterion , but we want to make it clear that
our method, initially proposed for linear-quadratic mixing
models, can be easily extended to polynomial models if there
is a need.

3. TEST RESULTS

3.1 Tests with artificial signals

We first present some results obtained with mutually inde-
pendent 100-sample i.i.d. artificial signals uniformly dis-
tributed over [0 1]. We here propose to study performance
depending on the closeness of the initialisation with respect
to the true data present in the mixtures.

Hence we initialise our NMF algorithm with 4° and §°
derived from the real data 4 and § by adding some noise,
to make initialisation different from the real data. Thus, the
initial error in our tests is controlled by changing the noise
power. This permits us to compare the final estimation error
errory with the initial error error; (between the initial and
real data), defined respectively as:

Y-Y|r
errory = % (13)
1Y —Y°|r
;o= 14
error, e (14)

where Y is the matrix for which we compute the error, among
§a, A, and AS. The notation Y stands for initialisation and
Y for the final estimate.

Note that, before calculating the errors over the sources and
linear mixing coefficients, the estimates are normalized so as
to have the same scale as in the true matrices (by dividing

each row of S, containing an estimated source by its power
and multiplying it by the corresponding real source’s power,

and we do the same for columns of 4,). This permits us not
to take into account the influence of scale factors, since they
correspond to well-known indeterminacies of NMF.

We here present results obtained with two mixing matri-

ces and for each one we study the evolution of the final error
errory as a function of the initial one error;. Note that those
errors have normalised values, as we divide by the true ma-
trix norm (see (13) and (14)) .
This study is interesting because it shows the algorithm ro-
bustness when initialisation is very different from the real
data, knowing that NMF performance often depends on ini-
tialisation. Moreover, in many applications we can have prior
information about data or some library of similar signals, so
initialisation can take advantage of that.

3.1.1 Casel

We here present results obtained with the following mixing
matrix

1 05 04
Al_{0.6 1 0.5}

We show the average estimation error obtained after run-
ning the algorithms for 10 couples of sources and each one
for 10 different initialisations (so the average result over 100
runs).

Figure 1 shows the source estimation error. As we can
see, results are good compared with the initial errors, even
if 80 is very different from the real data S (high values of
error;). The total error (Equations (13) and (14) applied to
AS) stays below 1072 (Figure 2) and this shows that the algo-
rithm converges well. However, concerning the estimation of
the mixing coefficients, if we compare the initial error with
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Figure 3: Case 1 - Mixing coefficient estimation error: error s
VS error;

the final one (Figure 3), we see that the improvement is less
satisfying than in the case of the sources.

Let us now compare the value of the estimation errors
in the three figures at one point in the curves. For high val-
ues of initial error, for example the last point in the curves,
we notice that the total error is small, so the algorithm con-
verges well. However, for this point, the estimation errors
for sources and coefficients are significant (about 0.3). From
these results, it becomes clear that the minimisation of the
criterion does not necessarily leads to a perfect source sep-
aration and estimation of mixing coefficients. This can be
explained by the non-uniqueness of the NMF solution, and,
as already mentioned, can be improved by adding additional
constraints to our algorithm.

3.1.2 Case?2

We now present results obtained with more highly mixed sig-
nals, obtained with the following matrix

1 09 08
4= [ 09 1 09 }

We again provide here the average result over 100 runs. As
we can see in Figure 4, results with this matrix are not as

Source estimation error
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Figure 4: Case 2 - Source estimation error: errory vs error;
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Figure 5: Case 2 - Total estimation error: errory vs error;
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Figure 6: Case 2 - Mixing coefficient estimation error: error s
VS error;

good as in the previous case, even if we obtain similar results
for the total error (the algorithm converges well). These re-
sults may be due to the fact that the rows of matrix A4, are
more similar than in case 1, so more correlated, and this has
an effect on NMF performance. Similarly, we will see in the
next section that NMF performance can be sensitive to cor-
relation between sources, which form the other factor in the
matrix product involved in (2).

3.2 Application to hyperspectral unmixing

Results presented here are related to hyperspectral unmixing
in remote sensing. The principle is to extract the reflectance
spectra corresponding to the different materials composing
the pixels in a hyperspectral image. As stated above, in some
cases, such as in urban environments, the mixing model faced
in these images is linear-quadratic, due to multiple scattering
of light between different surfaces. To be more precise, we
here only consider double scattering and neglect the higher-
order interactions.

Note that, if we take into account reflections with higher or-
der, a polynomial model (like that presented in Section 2.1)
can be considered. However, higher-order terms are likely to
be negligible in most remote sensing applications [6].
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Figure 7: Spectra in mixtures (simple lines), their estimates
(dashed lines) and the initialisations (thick dotted lines)

As data is positive in this case (reflectances and mixing
coefficients), our NMF method is convenient. We here face
a case in which a library of reflectance spectra of different
material classes is available. We here show an example of
results obtained with a couple of spectra mixed with the ma-
trix Ay presented above.

We initialise $° in our NMF algorithm with spectra be-

longing to a material class different from those of the sources.
We thus address the situation when we do not know the ma-
terials present in our mixtures.
To initialise the mixing matrix, we apply a least square
method with non-negativity constraint. Knowing 8, we ap-
ply this method for each observation separately to estimate
an initialisation 4° for the mixing matrix.

In Figure 7, we compare the real spectra present in our
mixtures (simple lines) with their estimates (dashed lines)
and the spectra used for initialisation (thick dotted lines).
For this example we obtain a final estimation error of 0.19
for sources and 0.5 for the mixing coefficients, whereas the
initial error is 0.37 for sources and is higher than 1 for coeffi-
cients. These errors are computed as in the previous section
(i.e. using Eq. (13) and (14) with the same normalisation).

We have to stress that it does not matter here if we es-
timate spectra with a scale factor, because in most remote
sensing applications, like classification, only the spectrum
shape is important because it is specific to one material.

Note also that estimating reflectance spectra is a more
complicated task, compared with the previous artificial sig-
nals, because spectra are correlated and even NMF methods
are sensitive to this problem.

4. CONCLUSION AND FUTURE WORK

In this paper, we first proposed a source separation method
based on Non-negative Matrix Factorization for linear-
quadratic mixing models, by extending an approach which
was previously reported for linear mixtures. We then showed
how our work may be further extended to the more general
case of polynomial models. As for results, we first pre-
sented examples with linear-quadratic mixtures of artificial
signals. Then we showed how our method may be applied in
hyperspectral unmixing where the linear-quadratic model is
needed in some cases to express data.

This paper open the way to several future investigations.
Concerning the linear-quadratic model, we here presented
our approach for only mixtures of two sources, so we intend
to describe our method in more detail in the general case of
N sources. It would be also interesting to detail the more
general case of polynomial models.

In hyperspectral unmixing, we often face correlated
sources, and this makes it more difficult to unmix the spec-
tra. Therefore we need to study the behaviour of the pro-
posed method in the case of correlated sources, to improve
our algorithm and adapt it more to that case.
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