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ABSTRACT

Nuclear quadrupole resonance (NQR) is a non-invasive
radio-frequency technique allowing for a practically unique
fingerprint for molecules containing quadrupolar nuclei,
making the technique very promising for detection purposes.
If properly excited, these nuclei will emit electromagnetic ra-
diation, the frequency of which is governed mainly by where
in the molecule the nuclei are positioned. However, the re-
sulting NQR signals are inherently weak and are prone to
strong interference signals from the measurement environ-
ment, making detection challenging. In this paper, we de-
velop a robust and reliable detection algorithm that general-
ize earlier techniques and incorporates both efficient inter-
ference cancellation and the ability to handle multiple poly-
morphs in the sought substance. The usefulness of the al-
gorithm is motivated by comparisons using realistic simula-
tions.

1. INTRODUCTION

When exciting quadrupolar nuclei with properly selected ra-
dio frequency (RF) radiation, the resulting quadrupolar res-
onance yields a unique signal signature of the excited sub-
stance [1]. The technique can be used for detection of var-
ious harmful substances, such as explosives and drugs, as
well as for the authentication of many forms of pharmaceuti-
cal substances. The ability to detect the former substances is
clearly desired [2], but also the latter application is of signifi-
cant importance [3]. Counterfeit medicines constitutes a dra-
matic problem in health care worldwide, and the problems
are growing. According to the World Health Organization
(WHO), counterfeit drugs constitute up to 25% of the total
medicine supply in less developed countries. For instance,
several forms of antimalarial medicines are commonly coun-
terfeited, since these are expensive and the demand is high.
In a study of antimalarial medicines from Cameroon in 2004,
it was shown that 38% of the medicines marked Klorokin,
74% of those marked Kinin, and 12% of those marked An-
tifolates contained none or only trace amounts of the respec-
tive active substances [4]. Even in rich countries, WHO pre-
dicts that about 1% of all medicines are counterfeit. Dur-
ing recent years, a series of algorithms based on approximate
maximum likelihood (AML) parameter estimation have been
proposed for the detection of NQR signals [5–10], exploiting
the detailed model for such signals developed in [6]. These
techniques have also been extended to allow for multiple
and/or polymorphic substances [7,8], as well as for measure-
ments made in a partly- or non-shielded environment [9,10].
The ability to handle polymorphic and/or multiple substances
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is of importance in the detection of several forms of high ex-
plosives, such as TNT, that occurs in both a monoclinic and
an orthorhombic crystalline structure, and for many common
pharmaceutical substances, where often only one of several
possible crystalline structures acts as the active ingredient. In
this work, we build on these earlier contributions, presenting
a merged robust algorithm, termed RESPEQ (Robust Eval-
uation using Subspace-based methods of Polymorphic nu-
clEar Quadrupole signals), able to handle both polymorphic
and/or multiple substances and the presence of very strong
corrupting signals. The latter is typical in partly- or non-
shielded measurement environments, commonly occurring
for the mentioned applications of interest. To allow for ef-
ficient interference cancellation, the proposed algorithm as-
sumes the availability of a primary data set, possibly contain-
ing the signal-of-interest (SOI), as well as a secondary SOI-
free data set, only containing noise and interference signals.
Such a secondary data set can, for echo train measurements,
be obtained in-between the SOI measurements, while wait-
ing for the nuclei to dephase to allow for further excitation
(see also [9, 10]).

2. DATA MODEL

As described in [8], the m:th echo of an NQR signal from a
pulse spin locking (PSL) sequence can be well modeled as
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are the echo sampling time, the echo number, the time

between the (center of the) refocusing pulse and the echo
center, the temperature, the number of sinusoidal compo-
nents of the p:th polymorph, and the echo spacing, respec-
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k T are the (com-
plex) relative amplitude, the echo damping constant, the echo
train damping constant, and the angular frequency of the k:th
spectral line of the p:th polymorph. Typically, t0 0 due
to dead time in the measurement. It is also worth noting
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that
p

k T is a known function of temperature, and that
the number of polymorphs as well as the number of sinu-
soidal components of each polymorph are known. The rel-
ative amplitude vector is normalized so that for the p:th

polymorph, maxk
p

k 1. Generally, , and T
can be assumed to be partially known, varying within a cer-
tain given interval [6]. The additive noise can be modeled as
consisting of two parts. Firstly, the measurement will be cor-
rupted by Johnson noise that can be well modeled as additive
Gaussian white noise. However, this noise will be colored
by the measurement equipment, causing a spectral shaping
of the noise [5]. Secondly, the measurements are generally
corrupted by substantial interference signals due to radio fre-
quency interference (RFI), piezo-electric and/or magnetoa-
coustic responses. For simplicity, although somewhat incor-
rectly, we will here denote all these forms of interference
signals as RFI. These forms of disturbances are modeled, for
the m:th echo, as

wm t m em t (3)

where , , m and em t are the filter coloring the noise, a
basis spanning the RFI subspace, the (complex) RFI weights,
and a Gaussian white noise term, respectively. Note that the
interference space, , is modeled as being the same for all
echoes. For this to be a good model, the RFI needs to be
close to stationary during the measurement.

In the following, let T , , †, and 2 denotes
the transpose, the conjugate transpose, the Moore-Penrose
pseudo inverse, and the 2-norm, respectively.

3. ALGORITHMDERIVATION

As shown in [5], the coloring imposed by the measuring
equipment, can be well modeled as a low order autore-
gressive (AR) process. The prewhitening will therefore con-
sist of passing the measured data through the corresponding

inverse AR filter, ˆ 1 as estimated from calibration data.
In the model, this simply corresponds to a rescaling of the
amplitudes of the spectral lines. Using (1) and (2), the m:th
echo can be rewritten as [7]
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The subscript for the matrix stresses the matrix’s de-
pendence of the unknown parameters of the p:th polymorph,

p , where
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Reminiscent of [10], the secondary data set is used to esti-
mate the basis . This SOI-free data is prefiltered in the
same way as above and then divided into blocks of the same
length as the echoes, creating an N K matrix NK where
each column is formed from one data block, and where K
denotes the number of used blocks. Let

NK (13)

be the singular value decomposition (SVD) of NK , where
and are unitary matrices containing the left and right

singular vectors, respectively, and is a diagonal matrix
formed with the singular values of NK in non-increasing
order on the main diagonal. The basis for the interference
subspace is formed from the dint most dominant (left) singu-
lar vectors, such that

1 2 dint (14)

where k is the k:th singular vector of and dint is selected
using an MDL-based approach as detailed in [10]. As shown
in [6], one may reduce the influence of interference signals
by limiting the detector to be formed explicitly only from
those frequency grid points where the frequencies of interest
may occur. This is achieved by means of a frequency selec-
tive Fourier transform. By choosing a temperature interval
that can be assumed to contain that of the sample, one may,
using the temperature dependence of the resonance frequen-
cies, determine the frequency ranges that may contain the
spectral lines of interest [6]. Considering a set of frequency
grid points in these narrow frequency bands, i.e.,

2 k1

N

2 k2

N

2 kL

N
(15)

where k1 kL are L integers corresponding to the (possi-
bly overlapping) frequency grid points matching the possible
ranges which may contain the SOI. Using (15), a frequency-
selective Fourier transform matrix is formed as

L k1 kL (16)
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where

k j 1 ei2 k j N ei2 k j N 1 N T
(17)

This has the effect that the parts of the frequency spectrum
that does not contribute to the detection of the signal are dis-
carded. As an additional benefit, the speed of the algorithm is
improved as fewer data points are used to form the decision.
Let ZLM denote the LM 1 data vector containing M echoes,
each formed using L frequency grid points. The resulting
data model can thus be written as
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where ˆ ˆ T Using the resulting model, the de-

tection criterion is formed as a generalized likelihood ratio
test (GLRT), using the estimated parameters best describing
the observed data. These are found as

ˆ argmin LM
2
2 subj. to a

2
2

(23)
for each possible grid point , which can thus be assumed
to be known in the minimization. Here, the minimization is
formed to reflect that the relative amplitudes are only approx-
imately known; one thus initially finds the amplitude vector
that best describes the observations, given that this vector

should be in the vicinity of the a priori assumed amplitude
vector, a The radius of the hypersphere, , thus dictates
the allowed deviation of the resulting estimate as compared
to the prior information, and will depend on the uncertainty
model of this deviation [8]. For the found amplitude vector,
the remaining model parameters are found such that

ˆ argmin ˆ
LM

2
2 (24)

where ˆ denotes the estimated amplitude vector as given by
(23) for the grid point . The coupled minimizations can
be solved as follows: Disregarding the constraint in (23), a
solution may be found as

ˆ †
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Let ˆ
p

k denote the value of ˆ corresponding to the k:th com-

ponent of the p:th polymorph and let g1 gP where
gp p. Given the used normalization, and that the propor-
tions should sum to unity, the estimates ˆ , ˆ and ˆ can then
be found as
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ĝp

ˆ
(29)

Thus, if this solution satisfies the constraint in (23), then this
is the solution to the minimization problem. However, if it
does not, the solution to (23) should instead be found on the
hypersphere boundary. As proposed in [8], using ˆ and ˆ as
initial estimates of and , robust estimates of can then
be found by solving the minimization problem

argmin LM
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2
2 (30)
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As shown in [11], the minimization in (30) can be solved us-
ing the SVD along with the use of Lagrange multipliers (see
also [12]). Using the so-obtained ˆ , a new, robust estimate
of is found by solving the least squares problem

˘ argmin
g
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2
2 (32)

where
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The real-valued solution to (32) is found as

˘ T 1

LM
T

LM

(34)
From this estimate, the final estimate of can be found as

ˆ g1
1 gP

P T (35)

Using this estimate, and the resulting estimate ˆ, given by
(24), the test statistic is formed as

LM
LM

2
2

LM
ˆ
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(36)

where ˆ
LM

ˆ
ˆ . The sought substance is deemed

present in the sample if and only if

LM (37)

where is an empirically predetermined threshold value.
Estimations of the proportions of the contained polymorphs,
as well as the overall amplitude, can be obtained using (26),
where gives an indication of the quantity of the sought
substance. Comparing the thus obtained detector with the
REMIQS detector [8], one notes that the primary difference
lies in the signal domain, which is here, as seen in (20) and
similar to [9, 10], formed in a space orthogonal to the ex-
pected interference subspace. As a result, it is expected that
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Figure 1: ROC curves for the RESPEQ, SEAQUER, and
REMIQS algorithms, for SNR = -20 dB, ISR = 40dB.

the proposed RESPEQ detector will behave similar to the
REMIQS detector for low levels of interference. Further-
more, if compared to the SEAQUER algorithm [9, 10], the
proposed algorithm should allow for improved performance
as the detection criterion in (36) is now formed as a combi-
nation of the contribution from the present polymorphs and
compounds. Both these conclusions are confirmed in the fol-
lowing numerical study.

4. RESULTS

In this section, the performance of the proposed RESPEQ
detector is compared to the earlier REMIQS and SEAQUER
algorithms which it generalize. To allow for easy compari-
son to the results in [8, 10], the algorithm is here evaluated
on simulated TNT data containing both monoclinic and or-
thorhombic crystalline structures, but similar results are ex-
pected also on other similar substances. In the following, the
interference to signal ratio (ISR) is defined as 2

i
2

s and the

signal to noise ratio (SNR) as 2
s

2
e , where 2

s
2
i and

2
e are the power of the NQR signal, the RFI power, and
the power of the noise without RFI, respectively. The RFI is
simulated, using recorded radio transmissions, to resemble
transmissions from three (amplitude modulated) radio sta-
tions with carrier frequencies close to the NQR frequencies
of the sought substance. The necessary multidimensional
grid search over is performed using a sequence of one-
dimensional subsearches, which, as shown in [6, 13], only
leads to a marginal loss of performance compared to a full
grid search. In Figure 1, the ROC curves of the RESPEQ,
SEAQUER, and REMIQS algorithms are shown, for a simu-
lated NQR signal from a sample containing 50% monoclinic
and 50% orthorhombic TNT, at a temperature of 285 K. In
the figure, the ISR = 40 dB and the SNR = -20dB, and with
the amplitudes having an additive truncated Gaussian error
with variance 2 and uniformly distributed phase errors over

, where 0 2 . As in [8], to simplify presenta-
tion, this uncertainty is coupled in a uncertainty parameter,
v, for both the phase and magnitude uncertainty as v

100

and 2 0 001v. Here, v is set to 10%. As can be seen from

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ISR

P
ro
b
a
b
ili
ty
 o
f 
d
e
te
c
ti
o
n

 

 

RESPEQ

SEAQUER(m)

SEAQUER(o)

REMIQS

Figure 2: Probability of detection as a function of ISR, for
p f 10%, SNR = -20 dB.

the figure, the proposed RESPEQ algorithm clearly outper-
forms the REMIQS algorithm, but also the SEAQUER algo-
rithm when tailored to detect the monoclinic and orthorhom-
bic crystalline structures, respectively. These two tailored de-
tectors are here termed SEAQUER(m) and SEAQUER(o) to
stress which polymorph is targeted. The noteable difference
between the resulting detectors is due to the fact that the or-
thorhombic TNT signal has higher damping coefficients than
the monoclinic, which has for effect that about two thirds
of the (noise free) signal power originates from the mono-
clinic NQR signal. The plot is formed using 3000 Monte
Carlo simulations. It is worth noting that the two here ex-
amined crystalline structures result in partly overlapping fre-
quency components, thereby reducing the advantage of RE-
SPEQ somewhat. For substances with better separated spec-
tral support, one may expect the gain to be more noticeable.
Figure 2 shows the impact of varying the RFI power, for a
fixed probability of false alarm, p f 0 1 Apart from the
ISR, the same parameters as above are used. Each point
in the figure is calculated from 1000 Monte Carlo simula-
tions. As noticeable from the figure, the performance of the
REMIQS algorithm deteriorates quickly with increasing in-
terference power, while the RESPEQ and the SEAQUER al-
gorithms provides good detection even for very strong inter-
ference signals. An interesting observation is that the SEA-
QUER algorithm seems to be marginally less vunerable to
very strong RFI than RESPEQ. Note that in this plot, the
RFI simulation is done in a more realistic way than in the
corresponding plot in [10], making direct comparison mis-
leading. Figure 3 and 4 show the mean square error (MSE)
of the estimate of the proportion of monoclinic TNT as func-
tion of the ISR and uncertainty level, for SNR = 0dB. Figure
3 shows the impact of the uncertainty level, v, on the MSE
of the estimation of the proportion of monoclinic TNT, 1,
for both the RESPEQ and the REMIQS algorithms, and for
an ISR of 5dB and 25dB, respectively. For comparison, the
Cramér-Rao lower bound (CRLB) for estimation of 1 with-
out RFI is included in the plot (see also [8]). Since exact
knowledge of the RFI is never available, no CRLB takning
the RFI into account has been derived. As is aparent from
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the plot, the RESPEQ and REMIQS algorithms perform sim-
ilarly for ISR = 5dB, although RESPEQ gives slightly better
estimations. For ISR = 25dB, RESPEQ performs significally
better for low uncertainty, but the estimation collapses for
higher uncertainty levels. In Figure 4, the MSE is instead
shown as function of the ISR, for both algorithms and for
v 5 and v 30 respectively. As expected, the REMIQS
and the RESPEQ algorithms perform similarly for low ISR,
whereas RESPEQ has an advantage for higher ISR values.
For ISR higher than about 40, the algorithms are unable to
estimate the proportions accurately.
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